LOCALIZATION OF THE COHOMOLOGY OF THE HOMOTOPY ORBIT SPACE OF p-COMPACT GROUPS

HYANG-SOOK LEE

ABSTRACT. For a p-compact group G, if G-space X is of finite S-type then we show that the localization $S^{-1}H^{*}(X_{hG})$ is zero. By using this result, we prove the localization theorem for the pair G-space (X,A).

1. Introduction

A loop space is a triple $G = (G, BG, e)$, where G is a topological space, BG is a connected pointed classifying space of G and $e : G \to \Omega BG$ is a homotopy equivalence from G to the space ΩBG of based loops in BG. Such a loop space is called p-compact group if G is \mathbb{F}_p-finite and BG is \mathbb{F}_p-complete. Here the second condition is equivalent to that G is \mathbb{F}_p-complete and $\pi_0(G)$ is a finite p-group. The main example of p-compact group is the p-completion of compact Lie group G, (\hat{G}, \hat{BG}_p, e), where $\pi_0(G)$ is a finite p-group and $e : \Omega \hat{BG}_p \simeq \hat{G}_p$. Dwyer and Wilkerson defined these p-compact groups and proved a lot of their properties in [5]. Their work shows that a p-compact group has much of the rich internal structure of a compact Lie group. In particular, they showed that every p-compact group has a maximal torus, normalizer of the maximal torus and Weyl groups. More homotopy theories of p-compact groups are developed in [6], [7], and [8].

Let G be a p-compact group. A G-space X is defined to be a fibration $p_X : X_{hG} \to BG$ with X as the fibre. Here we say X_{hG} to be homotopy orbit space of a p-compact group G. In this paper we give localization properties of $H^{*}(X_{hG})$ for p-compact group G. This is the generalization of the localization theorem for the equivariant cohomology of compact.

Received May 7, 2001.
Key words and phrases: Localization, p-compact groups.
The author was supported by KOSEF 97-0701-02-01-5, partially supported by the MOST through R & D Program 00-B-WB-06-A-03.
Lie group. In Section 2 we give basic definitions and properties regarding
p-compact groups as preliminaries. Section 3 gives new definitions with
respect to the p-compact groups and the proof of our main results.

All unspecified cohomology $H^*(_)$ groups are assumed with coefficients
in \mathbb{F}_p.

2. Preliminaries

A graded vector space H^* over a field F is finite dimensional if each
H^i is finite dimensional over F and $H^i = 0$ for all but finite number of
i. A space X is \mathbb{F}_p-finite if H^*X is finite dimensional over a finite field
\mathbb{F}_p. Let $\epsilon_X : X \to X_p^\sim$ be a natural map for any space X where $(_)_p^\sim$
is \mathbb{F}_p-completion functor constructed by Bousfield and Kan [2]. If ϵ_X is
homotopy equivalent, we say X is \mathbb{F}_p-complete.

Now we give the basic definitions regarding the p-compact groups [5].

A homomorphism $f : K \to G$ of p-compact groups is a pointed map
$Bf : BK \to BG$. The homogeneous space G/K is defined to be the
homotopy fiber of Bf over the basepoint of BG. The homomorphism
f is said to be monomorphism or equivalently $K \to G$ is a subgroup of
G if the homotopy fibre G/K of Bf is \mathbb{F}_p-finite, and an epimorphism
if $\Omega(G/K)$ is a p-compact group. Two homomorphism $f_1, f_2 : K \to G$
are conjugate if the associated maps $Bf_1, Bf_2 : BK \to BG$ are freely
homotopic. A short exact sequence $K \xrightarrow{f} H \xrightarrow{g} G$ of p-compact groups
is sequence such that $BK \xrightarrow{Bf} BH \xrightarrow{Bg} BG$ is a fibration sequence where
f is a monomorphism and g is an epimorphism.

Let G be a p-compact group. We define G-space X to be the fibration
p_X : X_{hG} \to BG$ with X as the fibre. The G-equivariant map $X \to Y$
is defined to be a map of spaces together with an extension to a map
$X_{hG} \to Y_{hG}$ of spaces over BG. A G-subspace A of X is a subspace
with the fibration $A_{hG} \to BG$ with a homotopy fibre A. If A is a
G-subspace of X, then A_{hG} is a subspace of X_{hG}. For $i = 1, 2$, let
f_i : H_i \to G$ be subgroups of G. Then H_1 is subconjugate to H_2 if
there exists a homomorphism $h : H_1 \to H_2$ such that $f_2 \circ h$ and f_1 are
conjugate. We say that the p-compact subgroups $H_1 \to G$ and $H_2 \to G$
are conjugate in G, denoted by $H_1 \sim H_2$, if H_1 and H_2 are subconjugate
to each other.

In the next section we extend the localization theorem for equivariant
cohomology of compact Lie group to a theorem for p-compact group.
3. Localization of $H^*(X_{hG})$ for p-compact group G

Let G be a p-compact group. We give the localization property of the cohomology of the homotopy orbit space of a p-compact group G.

The following result is known by W. G. Dwyer and C. W. Wilkerson.

Theorem 3.1 ([5]). If G is a p-compact group, then $H^*(BG, \mathbb{F}_p)$ is finitely generated as an algebra.

From classical algebra, if X is connected then H^*X is finitely generated as an algebra if and only if H^*X is Noetherian as a graded ring if and only if every graded ideal in H^*X has a finite number of homogeneous generators if and only if every graded submodule of a graded finitely generated H^*X-module is itself finitely generated. Also a H^*X-module satisfies the ascending chain condition on submodules if and only if every submodule of H^*X-module is finitely generated.

Now we give the following definitions.

Definition. An isotropy family for the p-compact group G is a set \mathcal{F} of p-compact subgroups $H \to G$ such that if $H \to G$ belongs to \mathcal{F} and $H \sim K$, then $K \to G$ also belongs to \mathcal{F}. The isotropy family \mathcal{F} is said to be open if $H \to G$ belongs to \mathcal{F} and $K \to H$, a subgroup of H, implies that $K \to G$ belongs to \mathcal{F}. The isotropy family \mathcal{F} is said to be closed if $K \to G$ belongs to \mathcal{F} and $K \to H$, a subgroup of H, implies that $H \to G$ belongs to \mathcal{F}.

Definition. A G-space X is \mathcal{F}-numerable if there exists a covering $\mathcal{U} = \{U_i \mid i \in I\}$ of X by G-subspaces with the following properties.

(i) For each $i \in I$, there exists a G-equivariant map $f_i : U_i \to G/G_i$, where $G_i \to G$ belongs to \mathcal{F}.

(ii) There exists a locally finite partition of unity $(t_i \mid i \in I)$ subordinate to \mathcal{U} by G-functions $t_i : X \to [0, 1]$.

If $f : X \to Y$ is G-equivariant and Y is \mathcal{F}-numerable, then X is also \mathcal{F}-numerable. For this, we take open G-covering $\mathcal{U} = \{U_i \mid U_i = f^{-1}(V_i), V_i \in \mathcal{V}\}$ where \mathcal{V} is a G-covering of Y satisfying the \mathcal{F}-numerable condition. Then the composition $U_i \to V_i \to G/G_i$ is also G-equivariant for $G_i \to G$ in \mathcal{F}. If we set $t_i = s_i \circ f$ where $\{s_i \mid s_i : Y \to [0, 1], i \in I\}$ is a locally finite partition of unity subordinate to \mathcal{V}, then it is easy to
see that \(\{t_i \mid i \in I\} \) is also a locally finite partition of unity subordinate to \(\mathcal{U}\).

Let \(X\) be a \(G\)-space with a fibration \(X \xrightarrow{i} X_{hG} \xrightarrow{p_X} BG\).

We assume \(H^*(___)\) has its usual multiplicative structure. This means that we are given product pairings (cup product)

\[
H^m(X, A) \otimes H^n(X, B) \to H^{m+n}(X, A \cup B)
\]

with the usual properties. This product yields a product pairing

\[
H^m(X_{hG}, A_{hG}) \otimes H^n(X_{hG}, B_{hG}) \to H^{m+n}(X_{hG}, A_{hG} \cup B_{hG}).
\]

Now \(H^*(X_{hG})\) is a graded module over \(H^*(BG)\) in a canonical way. The module structure is defined as follows. For \(b \in H^*(BG)\) and \(x \in H^*(X_{hG})\), consider \(p_X^*(b) \in H^*(X_{hG})\) and form the product \(p_X^*(b) \cup x\).

In particular \(H^*(X_{hG})\) becomes a graded algebra with unit.

Let \(S \subset H^*(BG)\) be a multiplicatively closed subset of homogeneous elements. We assume \(S\) is contained in the center of \(H^*(BG)\). Let \(M\) be a graded \(H^*(BG)\)-module and consider the localization of \(M\) with respect to \(S\), denoted by \(S^{-1}M\). Regard \(S^{-1}M\) as \(S^{-1}H^*(BG)\)-module and

\[
S^{-1}M \cong S^{-1}H^*(BG) \otimes_{H^*(BG)} M.
\]

The following result is from the commutative algebra.

Proposition 3.2 ([1]).

(i) If \(M \to N \to P\) is an exact sequence of \(H^*(BG)\)-modules, then \(S^{-1}M \to S^{-1}N \to S^{-1}P\) is an exact sequence of \(S^{-1}H^*(BG)\)-modules.

(ii) The kernel of the canonical map \(\phi: M \to S^{-1}M\) consists of those \(m \in M\) which are annihilated by some element of \(S\).

(iii) Localization commutes with colimits.

We consider the following set of \(p\)-compact subgroups of \(G\).

\[
\mathcal{F}(S) = \{H \to G \mid S \cap \ker[H^*(BG) \xrightarrow{p_H} H^*((G/H)_{hG})] \neq \emptyset\}
\]

where \(p_H^*\) is the induced homomorphism on the cohomology from the fibration \((G/H)_{hG} \xrightarrow{p_H} BG\).

Proposition 3.3. The set of \(p\)-compact subgroups of \(G\), \(\mathcal{F}(S)\) is an isotropy family.

Proof. We need to show that if \(H \to G\) belongs to \(\mathcal{F}\) and \(H \sim K\), then \(K \to G\) belongs to \(\mathcal{F}\). We consider the fibrations \(p_H : (G/H)_{hG} \to BG\) and \(p_K : (G/K)_{hG} \to BG\). Since \(H \sim K\), \((G/H)_{hG} \simeq BH\) and \((G/K)_{hG} \simeq BK\), there exist \(\tilde{f} : (G/H)_{hG} \to (G/K)_{hG}\) and \(\tilde{g} : H \to K\).
Localization of the cohomology of the homotopy orbit space

\((G/K)_{hG} \to (G/H)_{hG}\) such that \(p_K \circ \tilde{f} \simeq p_H\) and \(p_H \circ \tilde{g} \simeq p_K\). Then \(\tilde{f}^* \circ p_K^* = p_H^*\) and \(\tilde{g}^* \circ p_H^* = p_K^*\). Let \(x\) belong to \(S \cap \ker p_H^*\). For such \(x \in S, p_H^* (x) = 0\) and \(p_K^* (x) = \tilde{g}^* \circ p_H^* (x) = 0\). Thus \(x \in \ker p_K^*\), and hence \(x \in S \cap \ker p_K^*\). This implies \(S \cap \ker p_K^* \neq \emptyset\). Therefore \(K \to G\) belongs to \(\mathcal{F}\).

Definition. A \(G\)-space \(X\) is of finite \(S\)-type if there is a numerable, finite dimensional \(G\)-covering \(\{U_\alpha \mid \alpha \in A\}\) of \(X\), a finite number of \(p\)-compact subgroups \(H_1 \to G, \ldots, H_r \to G\) in \(\mathcal{F}(S)\) and \(G\)-equivariant maps \(f_\alpha : U_\alpha \to G/H_{n(\alpha)}\), \(n(\alpha) \in \{1, 2, \ldots, r\}\).

It is easily checked that if \(X\) is of finite \(S\)-type and \(Y \subset X\), then \(Y\) is of finite \(S\)-type.

Lemma 3.4. Suppose \(U_1, U_2, \ldots, U_r\) is an open \(G\)-covering of \(X\). If we are given elements \(x_1 \in H^*(X_{hG})\) whose restriction to \(U_i\) is zero, then the product \(x_1 \cdots x_r\) is zero.

Proof. Since \(U_i\) is a \(G\)-subspace of \(X\), \((U_i)_{hG}\) is a subspace of \(X_{hG}\) for \(i = 1, 2, \ldots, r\). For each pair space \((X_{hG}, (U_i)_{hG})\), there exists a long exact sequence

\[
\cdots \to H^n(X_{hG}, (U_i)_{hG}) \overset{j^*}{\to} H^n(X_{hG}) \overset{i^*}{\to} H^n((U_i)_{hG}) \overset{\delta^*_i}{\to} H^{n+1}(X_{hG}, (U_i)_{hG}) \to \cdots.
\]

Given element \(x_i \in H^*(X_{hG})\), there exists \(y_i \in H^n(X_{hG}, (U_i)_{hG})\) such that \(i^* \circ j^*(y_i) = i^*(x_i) = 0\) by exactness. Then the product \(y_1 \cdots y_r\) is defined and contained in \(H^*(X_{hG}, (U_1)_{hG} \cup \cdots \cup (U_r)_{hG})\). However

\[H^*(X_{hG}, (U_1)_{hG} \cup \cdots \cup (U_r)_{hG}) = 0.\]

Therefore \(y_1 \cdots y_r\) is zero. This implies \(x_1 \cdots x_r\) is zero. \(\square\)

Theorem 3.5. Let \(X\) be of finite \(S\)-type. Then \(S^{-1}H^*(X_{hG})\) is zero.

Proof. Since \(X\) is of finite \(S\)-type, there exist finite number of \(p\)-compact subgroups \(H_1 \to G, H_2 \to G, \ldots, H_r \to G\) in \(\mathcal{F}(S)\) and \(G\)-equivariant maps \(f_\alpha : U_\alpha \to G/H_{n(\alpha)}, n(\alpha) \in \{1, 2, \ldots, r\}\). Let \(A_i = \cup\{U_\alpha \mid n(\alpha) = i\}\). Then \(A_1, A_2, \ldots, A_r\) is open \(G\)-covering of \(X\). If we show that for each \(i\) there exists \(s_i \in S\) with image in \(H^*((A_i)_{hG})\) being zero, then the product \(s = s_1 s_2 \cdots s_r\) is zero in \(H^*(X_{hG})\) by Lemma 3.4. Hence each element in \(H^*(X_{hG})\) is annihilated by \(s\). This implies \(\ker \phi\) is equal to \(H^*(X_{hG})\) for the canonical map \(\phi : H^*(X_{hG}) \to S^{-1}H^*(X_{hG})\), and hence \(S^{-1}H^*(X_{hG})\) is zero. Since the covering \(\{U_\alpha \mid n(\alpha) = i\}\) of
A_i is finite dimensional and numerable, it is sufficient to consider the case $r = 1$. Let $H = H_1$, $A = \cup \{U_\alpha \mid n(\alpha) = 1\}$ and there exists $H \to G \in \mathcal{F}(S)$ with G-equivariant maps $f_\alpha : U_\alpha \to G/H$. Then there exists a covering V_0, \ldots, V_n of X such that each V_i is a disjoint union of open G-sets which are contained in at least one of U_α. In particular, each V_i has a G-equivariant map $h_i : V_i \to G/H$. Since $H \to G$ belongs to $\mathcal{F}(S)$, there exists $s \in S$ in the kernel of $p_H^*: H^*(BG) \to H^*((G/H)_{hG})$. Then s belongs to the kernel of the composition

$$H^*(BG) \to H^*((G/H)_{hG}) \to H^*((V_i)_{hG})$$

where the second map is $(h_i)^*_{hG}$. Thus $H^*((V_i)_{hG})$ is annihilated by s. Therefore $H^*(X_{hG})$ is annihilated by s^{n+1}. This completes the proof. □

Definition. The G-subspace A of X is **taut** in X with respect to $H^*(_)$ if the canonical map

$$\text{colim}_V H^*(X_{hG}, V_{hG}) \to H^*(X_{hG}, A_{hG})$$

is an isomorphism where the colimit is taken over the open G-neighborhoods V of A in X.

Theorem 3.6. Let A be taut in X and closed. Let $X \setminus A$ be of finite S-type. Then the inclusion map $A \hookrightarrow X$ induces an isomorphism

$$S^{-1}H^*(X_{hG}) \approx S^{-1}H^*(A_{hG}).$$

Proof. Since localization preserves exactness, it is sufficient to show that $S^{-1}H^*(X_{hG}, A_{hG})$ is zero. Since localization commutes with colimits, it suffices to show that $S^{-1}H^*(X_{hG}, V_{hG})$ is zero for open G-neighborhoods V of A. Since A is closed in X, we have the following excision isomorphism

$$S^{-1}H^*(X_{hG}, V_{hG}) \approx S^{-1}H^*((X \setminus A)_{hG}, (V \setminus A)_{hG}).$$

However $X \setminus A$ is of finite S-type, and hence $V \setminus A$ is of finite S-type. Thus $S^{-1}H^*((X \setminus A)_{hG})$ and $S^{-1}H^*((V \setminus A)_{hG})$ are zeros by Theorem 3.5. By exact cohomology sequence for the pair space $((X \setminus A)_{hG}, (V \setminus A)_{hG})$, $S^{-1}H^*((X \setminus A)_{hG}, (V \setminus A)_{hG})$ is zero. Therefore $S^{-1}H^*(X_{hG}, V_{hG})$ is zero. This completes the proof. □
Localization of the cohomology of the homotopy orbit space

References

Department of Mathematics, Ewha Womans University, Seoul 120-750, Korea

E-mail: hsi@mm.ewha.ac.kr