VOLUME PRODUCT FOR PEDAL BODIES

Y. D. CHAI¹, YONG-IL KIM², AND DOOHAN LEE

Abstract. Let K be a convex body of constant relative breadth and let K* be its polar dual with respect to the Euclidean unit circle. In this paper we obtain the lower bound for the volume of the pedal body PK* of K*. Using this, we also obtain the lower bound for the volume product V(PK*)V(PK) for planar bodies.

1. Introduction

Let K be a convex body of constant relative breadth and let K* be its polar dual with respect to the Euclidean unit circle. Let $V_ε(\cdot)$ denote the exterior Lebesgue measure with respect to the associated Euclidean space E^n. Following H. Busemann [2], we define the Minkowski volume $V(\cdot)$ by

$$V(K) = \sigma V_ε(K),$$

where \(\sigma = \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2} + 1) V_ε(\mathbb{B})} \).

In this paper, we obtain the lower bound for the volume of the pedal body PK* of K*. Using this, we also obtain the lower bound for the volume product $V(PK*)V(PK)$ for planar bodies.

2. Basic concepts

Let M^n be a Minkowski space with the metric m. Then there is a centrisymmetric compact convex body C in the n-dimensional Euclidean space E^n, which gives a metric m as follows. For $x, y \in E^n$ let \bar{x}, \bar{y} be points on the intersection of $U = \partial C$, the boundary of C, with the line

Received April 16, 2001.
2000 Mathematics Subject Classification: 52A21.
Key words and phrases: Minkowski spaces, pedal body, polar dual, relative breadth.
This work was supported by KOSEF 2000-2-10200-001-3 (†, †).
through the origin o which is parallel to the line passing through x and y. Then the Minkowski distance $m(x, y)$ is given by

$$m(x, y) = \frac{2e(x, y)}{e(x, y)}$$

using the associated Euclidean metric e. We call this centrosymmetric hypersurface U the indicatrix of the Minkowski space M^n and denote by $M^n(U)$ the Minkowski space with the indicatrix U. One can define the volume $V(\cdot)$ and the surface area $S(\cdot)$ on M^n [6]. When V and S are given, we call the solution of the isoperimetric problem for V and S the isoperimetrix of M^n and denote it by I from now on. In the Minkowski space M^n a line L_1 is said to be perpendicular to L_2 if L_1 intersects L_2 at x and for any point $y \in L_1$

$$m(x, y) = \min\{m(y, z) | z \in L_2\}.$$

If L_1 is perpendicular to L_2, then we say that L_2 is transversal to L_1. In general, the perpendicularity is not symmetric in Minkowski spaces M^n. For $n \geq 3$, the perpendicularity is symmetric if and only if M^n is Euclidean [1].

One can define the relative support function $h_U(K, \cdot)$ by

$$h_U(K, u) = \frac{h(K, u)}{h(U, u)},$$

where u is in S^{n-1}, the Euclidean unit sphere, and $h(\cdot, \cdot)$ is the Euclidean support function [5] defined by

$$h(K, u) = \sup\{x \cdot u | x \in K\}.$$

Definition 1. Let K be a convex body in E^n. We call the number

$$b_U(K, u) = h_U(K, u) + h_U(K, -u)$$

the relative breadth of K in the direction u. If $b_U(K, u)$ is constant for any direction $u \in S^{n-1}$, then we say that K is a body of constant relative breadth.

For details about constant breadth bodies, see [3].
3. Volume of PK^*

From now on we assume that K has o in its interior.

Definition 2. Let $K \subset E^n$ be a convex body. Then the pedal body PK of K is defined by

$$\rho(PK, u) = h(K, u),$$

where $\rho(\cdot, \cdot)$ is the radial function of K defined by

$$\rho(K, u) = \sup \{ \alpha > 0 \mid \alpha u \in K \}.$$

From now we denote the polar dual of K with respect to the Euclidean unit circle by

$$K^* = \{ y \in E^n \mid x \cdot y \leq 1 \text{ for all } x \in K \}.\]$$

We have the following theorem with the Minkowski volume $V(\cdot)$ defined by

$$V(\cdot) = \sigma V_e(\cdot)$$

as in (1).

Theorem 1. Let K be a body of constant relative breadth β in M^n. Then we have $V(PK^*) \geq \left(\frac{\beta}{2} \right)^n V(PI)$. The equality holds if and only if K is a unit ball with the center at the origin.

Proof. Note that the pedal body of a convex body is a star body, a body whose radial function is continuous. Since $\rho(PK^*, u)$ is continuous on S^{n-1} we have the following.

$$\frac{n}{\sigma} V(PK^*) = \int_{S^{n-1}} \rho^n(PK^*, u) du$$

$$= \int_{S^{n-1}} h^n(K^*, u) du$$

$$= \int_{S^{n-1}} \frac{h^n(K^*, u) + h^n(K^*, -u)}{2} du$$

$$= \int_{S^{n-1}} \frac{h^n(K^*, u) + h^n(-K^*, u)}{2} du$$

$$= \int_{S^{n-1}} \frac{h^n(K^*, u) + h^n((-K)^*, u)}{2} du.$$
where \(du \) is the surface area element on \(S^{n-1} \). Since the real valued function \(f(t) = t^n \) is convex and increasing on the interval \([0, \infty)\),
\[
\int_{S^{n-1}} \frac{h^n(K^*, u) + h^n((-K)^*, u)}{2} du \\
\geq \int_{S^{n-1}} \left(\frac{h(K^*, u) + h((-K)^*, u)}{2} \right)^n du \\
\geq \int_{S^{n-1}} \left(\frac{\frac{1}{h(K^*, u)} + \frac{1}{h((-K)^*, u)}}{2} \right)^n du \\
= \int_{S^{n-1}} \left(\frac{2}{\rho(K, u) + \rho(-K, u)} \right)^n du \\
= \int_{S^{n-1}} \left(\frac{\rho(K, u) + \rho(-K, u)}{2} \right)^{-n} du.
\]
Because \(\rho(\cdot, \cdot) \) satisfies that \(\rho(K_1 + K_2, u) \geq \rho(K_1, u) + \rho(K_2, u) \), we get
\[
\int_{S^{n-1}} \left(\frac{\rho(K, u) + \rho(-K, u)}{2} \right)^{-n} du \geq \int_{S^{n-1}} \rho^{-n} \left(\frac{K + (-K)}{2}, u \right) du.
\]
Since \(K + (-K) = \beta U \),
\[
\int_{S^{n-1}} \rho^{-n} \left(\frac{K + (-K)}{2}, u \right) du = \int_{S^{n-1}} h^n \left(\left(\frac{K + (-K)}{2} \right)^*, u \right) du \\
= \left(\frac{\beta}{2} \right)^n \int_{S^{n-1}} h^n(U^*, u) du \\
= \left(\frac{\beta}{2} \right)^n \int_{S^{n-1}} \rho^n(\rho(U^*, u)) du.
\]
We know that \(I \) is the polar dual of \(U \). So
\[
\int_{S^{n-1}} \rho^n(\rho(U^*, u)) du = \int_{S^{n-1}} \rho^n(\rho(U^*, u)) du \\
= nV_e(PI).
\]
This proves the result. \(\square \)

Corollary 1. If \(U \) is the Euclidean unit circle with the center \(o \), then
\[
\Gamma \left(\frac{n}{2} + 1 \right) V(OK) \geq \left(\frac{\beta \sqrt{2^n}}{2} \right)^n.
\]

Proof. Trivial from Theorem 1. \(\square \)
4. Planar bodies

Let K be a plane convex body in $M^2(U)$. Let $u = u(\xi) = (\cos \xi, \sin \xi)$ be in S^1, the unit circle with center o. Let $T(u,q,p)$ be a supporting tangent line at $q = q(\xi)$ on ∂K, the boundary of K, which is perpendicular to the ray $R(u)$ emanating from o and passing through u. And $T(u,q,p)$ meets $R(u)$ at the point $p = p(\xi) \in M^2$. Then the pedal body PK is a trace of points p. We know that the circle containing the points o,p,q has common tangent $T(PK,p)$ at p with PK [4]. From this we can compute the angle $\angle(T(PK,p),e_1)$ between $T(PK,p)$ and the x_1-axis, where $e_1 = (1,0)$. We get

$$\angle(T(PK,p),e_1) = 2\xi - \alpha - \frac{\pi}{2},$$

where $\alpha = \angle(q,o,e_1)$. Thus the Minkowski length $L(PK)$ of PK is

$$L(PK) = \int_{-\pi}^{\pi} \sqrt{\rho^2(PK,\xi) + \rho^2(PK,\xi)\rho^{-1} \left(U, 2\xi - \alpha - \frac{\pi}{2}\right)} \, d\xi,$$

where $'$ denotes $\frac{d}{d\xi}$. We call the Minkowski space with the indicatrix I, the dual space of $M^n(U)$ and denote it by M^n. Now we have the following.

Theorem 2. Let K be a body of constant relative breadth β in M^2. Then

$$V(PK)V(PK^*) \geq \frac{\beta^2V(PI)\left[r_i^2L^2(PK) + 4\pi V(K)\right]}{32\pi},$$

where r_i is the inradius of K, the maximal radius of circles contained in K.

Proof. We know that

$$L(PK) = \int_{-\pi}^{\pi} \sqrt{h^2(K,\xi) + h'^2(K,\xi)\rho^{-1} \left(U, 2\xi - \alpha - \frac{\pi}{2}\right)} \, d\xi$$

$$\leq \sqrt{\int_{-\pi}^{\pi} [h^2(K,\xi) + h'^2(K,\xi)]d\xi \int_{-\pi}^{\pi} \rho^{-2} \left(U, 2\xi - \alpha - \frac{\pi}{2}\right) \, d\xi},$$

(2)

Here (2) is less than $\frac{2\pi}{r_i}$ times the square root of

$$\beta^2 \int_{0}^{\pi} \left[\rho^{-2}(U,\xi) + \rho'^{-2}(U,\xi)\right]d\xi + 2V(K,-K) - 4\int_{0}^{\pi} h(K,\xi)h(K,\xi + \pi)d\xi.$$
Here $V(\cdot, \cdot)$ denotes the mixed volume. Since
\[
\int_0^\pi h(K, \xi)h(K, \xi + \pi) d\xi = \frac{\beta^2}{2} \int_0^\pi \rho^2(U, \xi) d\xi - \frac{1}{2} \int_{-\pi}^\pi h^2(K, \xi) d\xi
\]
we have
\[
L(PK) \leq \frac{1}{r_i} \sqrt{4\pi(2V(PK) - V(K))}.
\]
This completes the proof. \(\square\)

References

