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A GENERALIZATION OF THE NILPOTENT
SPACE AND ITS APPLICATION

SANG-EON HAN

ABSTRACT. For the generalized nilpotent spaces, e.g. the locally
nilpotent space, the residually locally nilpotent space and the space
satisfying the condition (7*) or (T™*), we find the pullback prop-
erty of them. Furthermore we investigate some fiber properties of
the space satisfying the condition (I7™*) or (T**), especially locally
nilpotent space.

1. Introduction

In this paper we find the pullback property of the locally nilpotent
space and furthermore we find the fiber property of the space satisfying
the condition (T**). Especially we focus on studying the fiber property
of the locally nilpotent space.

In this paper we work in the category of topological spaces having
the homotopy type of connected C'W-complexes with the base point
and continuous maps preserving the base point. Now we denote the
category by T.

2. Preliminaries

In this section we define the residually locally nilpotent space and
investigate the finite product property of the residually locally nilpotent
spaces. Furthermore we study the pullback and fiber property of the
locally nilpotent space.
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The category of nilpotent spaces [1, 4] and continuous maps is denoted
by TN.

Now we recall the concept of a locally nilpctent space as an extension
of a nilpotent space as follows [4]: a space X (= T') is said to be a locally
nilpotent space if 71(X) is a locally nilpoternt group and, in addition,
there exists a nilpotent 71 (X) - action on m,(X) for all n > 2 [1].

And we adopt the notation Ty for the category of locally nilpo-
tent spaces and continuous maps. Obviously, the category Ty is a full
subcategory of T n. We know that the finite product space of locally
nilpotent spaces is also locally nilpotent.

DEFINITION 2.1. We say that a space X satisfies the condition (7™)
if for all g,t € m(X) either g[g, 1 (X)] = t[t,m1(X)] or glg, m1(X)] N
t[t, 71 (X)] = ¢. Furthermore we say that X satisfies the condition (7*)
if for all g(# 1) € m1(X), g € [g, m(X)] [4].

LEMMA 2.2 ([4]). For X € Tyn, X satisfies the condition (T™).

Now we need the residual property in order to make new category
which we extend the category of nilpotent spaces.

We recall that a group G has the property x residually if for every
element g(# 1) € G, there is a nontrivial normal subgroup N of G such
that g ¢ N and G/N has the property x [6].

DEFINITION 2.3. X is called a residually locally nilpotent space, if

(1) m1(X) is residually locally nilpotent, and
(2) there is a residually nilpotent m; (X)-action on m,(X) for n > 2.

The above condition (2) means that for any element g(# 1) € m;(X)
and the selected nontrivial normal subgroup (g ¢)N C m1(X), m(X)/N
acts nilpotently on 7, (X). Let Tryy be the category of residually locally
nilpotent spaces and continuous maps.

Furthermore the category Trrny has a finite product property as the
following.

THEOREM 2.4. Let M be a finite set of indices and {X,|la € M :
ﬁnite}. If X, € Trpn for any « then HaEM X, €ETrrn-
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Proof. It is enough to show that for any X,, X5 € {X,|la € M :
finite} such that X,, X 5 € Trrn, Xo x X3 is a residually locally nilpo-
tent space. '

Since X, and Xg are residually locally nilpotent spaces, for any
9o(# 1) € m(X,) and any gg(# 1) € m(Xg) there are nontrivial
normal subgroups (9o ¢)Ho < m1(Xo) and (95 ¢)Hg < m1(Xg), re-
spectively such that m(X,)/H, and m(Xg)/Hg are locally nilpotent
groups. Thus for any (ga,gs)(# 1) € 71(X4) x 71(Xg) we have a non-
trivial normal subgroup ((g«,95) ¢)Ha X Hp in m1(X,) X m1(Xg) such
that m (Xo)/Hq x m1(Xg)/Hp is a locally nilpotent group.

Next, for any g.(# 1) € m1(X,) and any gg(# 1) € m(Xp) there
are subgroups (g9, ¢)H, < m1(X,) and (gs ¢)Hp < m1(Xg) such that
71(Xa)/Ho acts nilpotently on m,(X,) and m1(X3)/Hp acts nilpotently
on m,(Xg) for n > 2.

Then we have the finite lower central series in m,(X,) and m,(Xs)
under the m(X,)/H, and 7m1(Xg)/Hg-action with the nilpotent class
n, m respectively as followings;

Tn(Xa) DG2 DG3D DG D+ DGy = {e},
Tn(Xg) DHy DH3 D - D H; D+ D Hp, = {e}.

Now we make the following new sequence from above;

Wn(Xa) Xﬂn(Xﬁ) D’]l’n(Xa) XH2 DGQ XH2
D"'DGj_lx.HiDGjXHiDGjXHH_l
D DGy x Hy = {e} x {e}--- ().

Then the above sequence (f1) is a finite lower central series of 7, (X,)
X 7, (Xg) under the componentwise m1(Xo)/H, x m1(Xg)/Hg-action.
Thus the finite product space [],c1 Xo € Trin. a

REMARK 1. The converse of the Theorem 2.4 does not hold in general.
The category Ty is a full subcategory of Trrn. In general X(€ Trrn)
does not satisfy the condition (7*).

The residually locally nilpotent space is very important in studying
the fiber property in relation to the condition (T**) [see (#g) from The-
orem 4.5].
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3. Pullback property of the locally nilpotent space

In this section we make results on a fibration of the space satisfying
the condition (7™*) and apply them to make the pullback diagram in
the category of locally nilpotent spaces.

Let us recall the following:

LemMma 3.1 ([3]). Let X be finite. If m1(X) contains a torsion-free

normal abelian subgroup A # 1 which acts nilpotently on H,(X) where
n >0, then x(X) = 0.

LEMMA 3.2 ([4]). Let X be a space satisfying the condition (T**).
If

(1) the action m1(X) on H,(X) is nilpotent for n > 0, and
(2) m1(X)(# 1) is finite,

then X € Ty, where X is a universal covering space of X.

We know that the condition (7*) is stronger than the condition (7**)
(see the proof of Theorem 4.4). Thus if the space X satisfies the condi-
tion (T™) with (1) and (2) from Lemma 3.2 then X € T.

We recall the Engel group G [6], i.e. the group which has a relation
of the form [---[[z,y],y], -+ ,4] == [z,v,9, - ,¥] := [#:ny] = 1, where
[z,y] := 27y 'y, the commutator of any two elements z, y(€ G). The
number of entries of ¢’s in the formula above depends on both x and y.
We do not need to bound it uniformly.

When the case 71 (X) is finite Engel group, 1 (X) is trivially nilpo-
tent. If 71 (X) is infinite Engel group with the maximal condition, then
71(X) is also nilpotent.

REMARK 2. Since the Engel group is a kind of generalization of a lo-
cally nilpotent group, we can represent our following assertion regardless
of the (finite or infinite) cardinality of 71(X) for the space X satisfying
the following two conditions with 71 (X) non-trivial:

(1) m1(X) is an Engel group with the maximal condition
(2) m1(X) acts nilpotently on H,(X) for n > 0

then we get x(X) = 0.
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In an exact sequence A’ — A — A" of @-modules with Q-actions
w',w,w"” for a group @ respectively, w is nilpotent if w’, w” are nilpotent
[5, 4.3].- - (#2) -

When the sequence above is short exact, w is nilpotent if and only if
w',w" are nilpotent [5, 4.3].

We recall that the extension of nilpotent groups does not need to be
nilpotent [7]. In the following short exact sequence

l1-N—->H—-G—1---(3)

with N, G nilpotent, H is not necessary nilpotent.

Furthermore even though groups N and G are locally nilpotent H
does not need to be locally nilpotent.

However, a locally nilpotent group has a hereditary property, i.e. if
the group G is locally nilpotent, so is the subgroup H. Furthermore a
factor group of G is also locally nilpotent but the converse need not be
true [7].

In the following pullback diagram &:

suppose that X,Y € T in the diagram & above, then W € T if and
only if w1 (W) operates nilpotently on m,(B) for n > 2, via f owug [5,

7] (fa)

THEOREM 3.3. In the above pullback diagram &, suppose that X,
Y € Tpyn and 72(B) = 0. Then the pullback W € Ty if and only if
71 (W) operates nilpotently on w,(B) for n > 2 via f o u,.

Proof. Let us take the Mayer-Vietoris sequence from the pullback
diagram & above:

Tnt1(B) — 71, (W) - m(X) @ mp (V) — - -
— 7m(B) » m(W) 25 K —0---(f)
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with 71 (W)-action where K is the pullback cf the following diagram [5,
74]:
™1 (X)

lﬂl(f)

m(Y) _mlg) | m(B)

While, we get m (W)/Kerp, = K from (§5). Since 71(X) @ m1(Y)
is locally nilpotent, the subgroup K of 71 (X) @ m1(Y) is also locally
nilpotent. Since m(W)/Kerp. is locally nilpotent and Kerp, is trivial,
71(W) is locally nilpotent. Next, since the action of 71 (W) on m,(B) is
nilpotent via f oug for n > 2, m; (W) acts nilpotently on both m,(X)
and 7, (Y) from (§2). Thus m (W) acts nilpotently on 7, (W) for n > 2
from (f2) and (f4). Therefore W € Ty .

Conversely, suppose W € T n. Then frora an application of (§s) to
(§5) we get our assertion easily. O

4. Fiber property of the space satisfying the conditions (7T*)
or (T**) and locally nilpotent space

From the above pullback diagram & with X, Y (€ Ty), recall that if
X or Y is 1-connected then W € Ty [5, 7.7].

We recall the fiber property of the nilpotent space in a fibration [6],
furthermore we get the following:

THEOREM 4.1. In a fibration F > E % B with m(B) = 0, if
EeTyy then F € Ty .

Proof. Inthe pullback diagram from Theorem 3.3, put Y as one point.
From the homotopical exact sequence (f5) above and by the similar
method of the proof from Theorem 3.3, we get my (F') locally nilpotent.

Next, since the action 71 (F') on 7, (B) is nilpotent via poi for n > 2,
71(F) acts nilpotently on 7,(F) for n > 2 by (f#2) above. Therefore
FeTry. O

THEOREM 4.2. In a fibration F -5 E % B, if E € Ty then B also
satisfies the condition (T™*).
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Proof. Since E satisfies the condition (7*) by Lemma 2.2, then the
space B such that m1(B) = 71 (E)/Kerp, also satisfies the condition
(T*). The reason why is that the followings are equivalent [4]:

(1) E satisfies the condition (T*).
(2) For each a € m(E),

h € [a,m(E)] = [ah, 71 (E)] = [a,m(E)]. - (ts)

Thus for any @ € m1(E)/L, with k € [a, 7 (E)/L] where L = Kerp,
and @ = aL,h = hL. Since E satisfies the condition (T*) we get
[ah,m1(E)] = [a,71(E)] by (). And [ah,m(E)]L = [a,m(E)]L =
[@h,71(E)/L] = [a,71(E)/L]. Thus B satisfies the condition (T*). O

We remind that a map f: X — X is called a fixed point free defor-
mation if f has no fixed point and is homotopic to 1x [2].

THEOREM 4.3. For finite X(€ Trn) such that 71(X) # 0 and X
satisfies one of the followings:
(1) m1(X) is finite
(2) m(X) is infinite with the maximal condition on normal sub-
groups of m1(X)
(3) m(X) is torsion-free with all proper subgroups of m1(X) nilpo-
tent,
then X € T and X admits a fixed point free deformation. Furthermore
in the case (1) above, the universal covering space of X with m1(X) non-
trivial also admits a fixed point free deformation.

Proof. For the cases of (1) and (2): we already proved that X is a
nilpotent space [4]. ‘

For case (3): If X(€ Trn) and m;(X) is torsion-free with all proper
subgroups of 71 (X) nilpotent [8, 2.1] then X € T. Hence x(X) = 0.
Thus X has a fixed point free deformation.

Next, from the following property: x(X) = [m(X)[x(X) for m (X)
non-trivial, obviously we get x(X) = 0 for the above case (1), thus our
proof is completed. O
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THEOREM 4.4. For the fibration F 5 E % B if E € Tyy then B
satisfies the condition (T**). Furthermore, if m1(B) acts nilpotently on
H,(B) where n > 0, and satisfies one of the following cases:

(1) m1(B) is finite,

(2) m1(B) is torsion-free with all proper subgroups of 7 (B) nilpo-

tent,

(3) m(B) is infinite with the maximal condition on normal sub-

groups of m1(B)

then B € Ty.

Proof. In the classical homotopical exact sequence of the above fibra-
tion, we put m,(B) = 7 (E)/Kerp,. Since E satisfies the condition (T*)
from Lemma 2.2, B also satisfies the condition (T*) from Theorem 4.2.

Suppose B does not satisfy the condition (7**). Then there is g(#
1) € mi(B) such that g € [g,n1(B)]. Thus g~! € [g,71(B)] and 1 €
glg, 71 (B)]. This implies g[g, m1 (B)] () 1[1,m(B)] # ¢. Since B satisfies
the condition (T™), glg,71(B)] = 1. But g(# 1) € glg, 71(B)], we have
a contradiction. Thus B must satisfy the condition (7**).

Now we check the space B according to the three cases above.

For case (1): if m1(B) is finite, since B satisfies the condition (7**)
we get B € Ty by Lemma 3.2.

For case (2): since B(€ Ty ) has the property that 7, (B) is torsion-
free with all proper subgroups of 7;(B) nilpotent, B € Ty.

For case (3): we get m(B) finitely generated nilpotent, and m;(B)
contains a torsion-free normal abelian subgroup A # 1 which acts nilpo-
tently on H.(B). Therefore we get B € Ty from the implication of
Lemma 3.1. At any cases above, B is nilpotent. a

The condition (T**) is very convenient tocl in checking the nilpotent
structure for the given locally nilpotent space. Thus let’s check the
following;:

THEOREM 4.5. In a fibration F % E % B, if E satisfies the condi-
tion (I"**) then B also satisfies the condition (T**). --- (§7)
But the converse of the statement (#7) does not need to be true.

- (#s)

In a while, the converse statement of (#7) is valid if E € Trry. -+ (fio)
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Proof. Since E satisfies the condition (7%*), for any g(# 1) € m(F)
we get g ¢ [g,m1(E)]. Let us remind that 7;(B) = m; (E)/Kerp,. More-
over for any g(# 1) € m(E)/Kerp,,§ ¢ [g§,m1(F)/Kerp.]. Thus B
satisfies the condition (77*).

Next, we get a following example of the statement (fg). Let us use
the further property that a group extension N — G — @ induces a
fibration BN — BG — B(Q where B means the classifying functor. In
this case for a given group extension Z, — S5 %> Z3 we get the fibration
BZs — BS3 LN BZs. From the fibration we take an exact sequence:
— m1(BZy) — m1(BS3) 2% m(BZs) — 0.

From the exact sequence we get m1(BZ3) = Z3 = 71(BS3)/Kerp,.
As we know that BZjg satisfies the condition (T**) but BS3 does not
satisfies the condition (7*). Thus we get the above statement (fz).

Finally if E € Trrn, for g(# 1) € m(E), there exists a normal
subgroup (g €)H of m1(E) such that my(F)/H is locally nilpotent. If
g(# 1) € m(E)/H then g ¢ [g,n1(E)/H]. Hence g ¢ glg, 71 (F)]. Thus
we get the statement (fy) for £ € Trrn. O
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