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Bayesian Approach for Determining the

Order p in Autoregressive Models
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Abstract

The autoregressive models have been used to describe a wide variety of time
series. Then the problem of determining the order in the times series model is very
important in data analysis. We consider the Bayesian approach for finding the order
of autoregressive( AR) error models using the latent variable which is motivated by
Tanner and Wong(1987). The latent variables are combined with the coefficient
parameters and the sequential steps are proposed to set up the prior of the latent
variables. Markov chain Monte Carlo method(Gibbs sampler and Metropolis—Hasting
algorithm) is used in order to overcome the difficulties of Bayesian computations.

Three examples including A&R(3) error model are presented to illustrate our proposed
methodology.
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1. Introduction

The autoregressive models have been used to describe a wide variety of time series. A
general specification of the autoregressive process of order p, AR(p), is given by
(xi=m)=¢¢ +¢1(x1—m ) +dx 3= m )+
+ @ (x o py—m ) TEy 1.1
where &, is a Gaussian white noise process with variance .
The process is stationary if in addition to the polynomial root condition, 2, is not depend on
t. It is clear that different formulation of the AR(p) model can obtained by different choices

of the m; .

The AR means model is obtained by taking m, to be an arbitrary constant. Also, the
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AR error model obtained by taking m,= g, a process mean parameter to be assumed
constant for all { together with ¢y=0 to avoid over-parameterisation, is given by
(x,— ©) = ¢1(x =17 w+ ¢2(x =27 w)t e+ ¢p(x t—p v+ e, 1.2)

and the error &, is white noise Gaussian with mean zero and variance @ 0.

For general class of time series models, a Bayesiarn analysis of the problem of consistent
model selection is big issue. A Bayesian approach to model selection has attracted attention in
the work of Atkinson(1978) and others. Pokitt and Tremayne(1983) consider a Bayesian
analysis of the problem of consistent model selection for general class of time series models
using the posterior odds. McCulloch and Tsay(1994) and Chib and Greenberg(1994) have
utilized the Gibbs sampler for Bayesian analysis of AR and ARMA processes, respectively.
Marriot et al.(1994) have presented model selection not be based upon a single number, but
that comparison of predictive performance of competing models be made at each time point in
ARMA(p,q). Recently Naylor and Marriott(1996) have presented analyses of the stationary

and non-stationary models.

In this paper, we consider the Bayesian approach for finding the order of autoregressive
error models. The assessment of the order of an autoregressive model is model selection
problem encountered in many applications. Our methodology is oriented to the “sequential
step” which is based on the idea of the data augmentation by Tanner and Wong(1987). This
data augmentation method is used by George and McCulloch (1993) and Kuo and
Mallick(1998) for linear and generalized linear regression using binary indicators for each
predictor in the model. Using Gibbs sampling, or similar Markov chain Monte Carlo
techniques, these variable selection procedures are set up to compute posterior probabilities for

all the 27 possible models having p different covariates. In the autoregressive model in (1.2),
we consider, by introducing the latent variables into the prior of the coefficient parameter,

the sequential step for the model selection which means that the model can take the ¢;

only after ¢;,,¢;-; are reached. Therefore, we do not have to search over all the possible
models since the number of autoregressive models is substantially smaller than the number of
all possible models. For example, if there are p=4, then there are only four autoregressive
models

to consider; the first, the second, the third and forth order. Then, the marginal posterior
probabilities of the latent variables will be computed to decide the order of AR(p). In order
to overcome the computational difficulties of the marginal posterior density, we use the Gibbs
sampler(Gelfand and Smith, 1990). Also, we propose a simple approach by reparameterising
parameters in terms of partial autocorrelation functions in order to run the Gibbs sampler
easily in AR(p) model.
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The rest of the paper i1s organized as follows. Section 2 introduces the Bayesian

formulation of AR(p) model. Also, the "sequential step” is proposed in order to assign the
probability distribution to the latent variables. In Section 3, to overcome the computational
difficulty, we use Markov chain Monte Carlo method including the Gibbs sampler and
Metropolis algorithm. Therefore, we derive the full conditional densities and a simple method
is proposed for obtaining parameters randomly from the stationarity region of an AR(p)

process. Finally, in Section 4, our proposed methodology is applied to three examples.

2. Bayesian formulation for AR(p)

We consider the model in which an observation ¥y, at time ¢ Iis generated by
autoregressive process of order p. Let y,=(x,~ ) in the model (1.2). Then we can rewrite
the model (1.2) as follows;

V=1t oy ot dypy t—pT € F= L., m. (2.1)
This process is said to be stationary if the roots of
1—¢$B— ¢y B*—--— ¢,B’ =0

lie outside the unit circle and B is a back shift operator.
2.1. Likelihood

Motivated by the work of George and McCulloch(1993) and Kuo and Mallick(1998), we
explore a simple method of subset selection. Instead of building a hierarchical model, we
embed indicator variables in the autoregressive error model in (2.1). In other words, the order

of autoregressive models is completely determined by the binary vector =71, ..., 7). Let

7; be an indicator variable supported at two points 1 and 0. We write the autoregressive

error model for the th subject, ¢=1,...,n, by
ye= ;17,‘?5,‘3’:—,"}‘ g, t=1,-,mn, (2.2)
and
e~ MO, (72)
where ¢=(¢1,...,d,) is the usual unknown column vector of coefficients. When  7;=1 if

the order is added and y;=0 if the order is dropped. We assume that our model has at most
the order p. The model (2.2) can be rewritten as the distribution of v, given H,_; and 6,

where H,_; is the past history, is
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AdH 1, O~N Y 4y 90 ) 2.3)

e —

where ¥4, g= 7161V -1+ -+ 70 i—p and 0= (1, -, 7y, b1, $p, 0°). By the law of

total probability, the joint of the observations, conditioned on the first p, is

f3per 9 lvp e, 0= T FilH -, 0)

‘ oca_("_p)exp(— # tﬁﬂ(yt‘ N6 -1 7’p¢pyt—p)2)' @4)

=7
2.2. Prior distributions

Our interest is to combine the data y=(yy,*,y,), with the prior information, if
available, to obtain the posterior o: the unknown parameters

0=( ®,0°, r), where r=(7,",7,) and @=(¢y, -, ¢,). Therefore, we suppose that the

prior distribution of ( @, 7,d°) is given by

A 0.7, A= l41xl1PLn, 7). 25

And let,
xl @1=nl (1, ¢)1~Nyp 4,05 DI ®=C,)
where I is an identity matrix and I{ @€ C,) denotes the indicator function and C, is p
—-dimensional hypercube to satisfy the stationarity. Let
mlo®] o< 672,
In the autoregressive model AR(p) with the order p, we consider the sequential step for

our model selection which means that the model can take the ¢; only after 1, ...,9 ;- are
reached. In other words, to get the coefficient parameter ¢; one must pass through the
coefficients ¢y, ...,¢;-;. Let p;=Pr(ylr,....,7;-1). Then, p; can be determined when
yi=+-=v;—1=1, but if at least one of the values of Y1, ..., Y j—1 1S zero, p; must be
zero. Therefore, the joint prior density #{#) of gamma may be defined as follows,; let
Plyy,=1)=p, and Ply;=0)=1-—p,. We assurne that ¢, exists always, ie.
P(y;=1)=p=1. Since the value of ¢, is considered only when ¢, exits, let
P(y,=1ll7yy,=1)=py and P(y,=01r,=1)=1—p; Thus

P(7’2=0, 7’120)21, P(7’2=1| 7’1=O)=O. Also, let P(7’3=1|72=1, 7’1=1)=ﬁ3,
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P(r3=0ly,=1,n=1=1—p3. Then P(y3=0]r,=0,7,=1 =1 and

P(y3=1lr;=0, n=0)=FPr;=1lr,=1, y,=0)=
P(y3=1lr,=0, 71=0)=P(y3=01r,=1, r,=0)=0.

Therefore, the joint prior density P(y, ---,71,) of 7y,*,7, is of the general form

I(y,==n=1)

P(n,r) =(18)

—1 Iy, =0,7,1==n=1
X ( (1 - pp) j;[lpz')

I(yy==7,=0, =1

XX (P (1= py)) ' ) (2.6)

For a giveﬁ prior density function, a( @, o , 7), the posterior of interest is given by
(@, MY FY i, ¥y 31, @, 0%, (O, P, 7). (2.7)

3. Full conditional distributions

Densities are denoted generically by brackets, so joint, conditional and marginal forms, for
example, appear as, [X, Y],[X|Y] and [X], respectively. Given a prior distribution on
(@, 6, r), the joint posterior distribution for ( @, 6%, 7) given y is

t=F+1 =

g(‘ﬁk #¢)

(yt ﬁ ¢/yt 7 ]

10,8, vyl <27102) exp |

X( 27?102¢> zex

x(—olz—)_lP[n,---,n]. (3.1)

Bayesian inference proceeds by obtaining marginal posterior distribution of the components of

0=(@,5, ) as well as features of these distributions. The Gibbs sampler introduced by
Gelfand and Smith(1990) as a tool for carrying out Bayesian calculations, provided samples
from the posterior in (3.1). This requires sampling from the complete conditional distributions
associated with @, each of which is proportional to the right side of (3.1). In order to obtain
the joint conditional density of Cres ===, 75) , let
S={S$,=(1,0,0,--,0),S,=(1,1,0,-,0),,S,=(1,1,-+,1)} be a set which has p

elements. Therefore, the full conditional densities are needed as follows;
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n—pop t=p+1(Yt—
2 y

2
[ @ ’. yl~ IG =17’j¢jYI“j) ] (32)

[N

B

]

_ _ﬁ gl( by #¢)2} (3.3)

subject to the restriction to p-dimensional hypercube, C,.

[¢1,--.,¢p|02, 7, yles exp{ 202 = p+1(

[(7,,7)ESI, @, y]=

[y, Oy, . r)eS]1PL(y, -, 7)ES,]
;S[ y'oz’ ¢|(7’1,"',’)’p)ESZ~] P[(7’1,"‘,7’p)ES,~] ’ (3.4)

In sampling scheme, the conditional distribution of o is straightforward. But, in equation
(3.3), the joint conditional distribution of (¢1,-",¢,) has a restriction to satisfy the

stationarity condition. This restriction should be incorporated in estimation. Therefore, we
make use of some well-known time series results which are usefully summarized in notes of
Monahan(1984) and Jones(1987).

Let p=(p1,---,pp) be the first p partial autocorrelations function of process. By
reparameterizing (@1, *,$,) in terms of (py,**,0,) as in Jones(1987) the stationarity
constraints become |p]<1 for =1, -+, p. The detail descriptions are as followings:

Set ¢>1(1)=p1 and

P =0 V0,00, i=1, k1 (35)
with ¢ P =p, for k=2, p Finally, set ¢=(:¢1(”),---,¢,,(‘°)). The Jacobian of the
transformation is

J= sz(l — o) (] 4 o, LD (3.6)
for p=2 and is one when p=1 and [x] denotes the integer part of x
The advantage of working with partial autocorrelations is that the stationarity conditions

translate to the simple constraints that the partial autocorrelations range freely in the

hypercube C; x---XC,, ie, lpid<l, i=1,---,p. For example, let p=3, the transformation is
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simply obtained as follows;
$1=p1— P102— P203, P2= 02— P103~ P10203, $3= O3 (3.7)
where |o;1<1, i=1,2,3 and the Jacobian of the transformation is
J=(1—p)(1=p3).
Therefore, the full conditional distribution of (3.3) in AR(3) model is transformed into the

following forms;

[o1l 02, 03,0, 7, ¥] ~N+(—B—,A‘1

S—

A ¥
[ 02l 02, 03, 0, 7, ¥] < (l—pz)W(—g,C_l),
[o3l 01,05, 7, ] o (l—pg)NJr(%,E">,
where
Ao 24[03(1—.02)7’23’ =2 7’13’:—1(1—02)]2 N [(1—p2)2+(1—p2)2p§]
o o ’

_ 031 — 09 7rey i3 — 11y - 1(1 — py)
B= — 24( D72V ¢ 02 )

v ( Vit V1Y 1—10203 = V2Y 1202~ 7303Y 1—3 )

(1—0)(pa03+ 12 4) + 03(1 = p2)(02— £ )

+ 02¢ ,

2
o tg[(pﬁps)mt-g 75y 1—o(1+ 0105)] N (1+p3)2"|(;2(1+0103)2
@

_ (011 03)71Y 1-1 = 79Y = 2(1 + £103))
D= 24( o )

« ( Vit 7Y =101 1 Y2V 1—20103 = Y303V 13 )

0,2

N (1+ 03001 — 1 )+ (A + 0100103+ 1 )
o ’
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_ Srdery ity el — 0 —7vimal® | 0i+ i1 -0 +1
E_ 0_2 + O_Z ’
¢

102+ _901(1—py) — _
F= — 24( V1Y =102+ 7Y 1—20,(1 — 03) — 73V, 3)

o ( V= 71 -101(1 — 02) = 72¥ 1205 )

i o201 (1 —09) —p )+ 14+ 0,(1— o) (03— £ 4) ,
o
and N* (a, b) denotes the truncated normal distributior. with mean @ and variance b.
Hence, we have a simple method for obtaining parameters randomly from the stationarity

region of an AR(3) process. Using the one-for-one method and Metropolis-Hasting

algorithm, we can generate three independent variates (p, 07, 03) and apply to the
transformation (3.7) and then obtain (¢;, ¢5, #3). Extension of the method to AR(p) is

immediate. Finally, the joint conditional probability of (3.4) is obtained by using Bayes
theorem and this sampling is straightforward. The scheme goes through the sampling steps in
(3.2)-(3.4) until the convergence is achieved.

4. Examples

We apply our proposed methodology to three examples involving autoregressive processes

with different orders. The white noise ¢&; was generated from normal distribution with mean 0

and variance 1. We deal with simulated data with the sample size n=>50 . Their true

models are as follows;

Data 1 ( AR(1) model) : Let ¢;=0.7.
Data 2 (AR(2) model) : Let (¢, #5) = (0.2,05).
Data 3 (AR(3) model) : Let (&, dy, d3) = (0.7,-050.4).

These values of @=(¢;, ¢y, #3) in each model ensure the condition of the stationarity in

their models.

In the implementation of the Gibbs sampler, the first 200 draws are discarded and the
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algorithm is run to obtain 800 draws from the posterior. The results for Data 1, 2 and 3 are
presented in Table 4.1 which shows the frequency of the orders over 800 runs. In Table 4.1,
the values within parenthesis denote the percentage of each order which is the estimate of its
posterior probability.

Table 4.1. The frequency of order in AR error model

Model Selection
True Total

order 1 order 2 order 3

AR(1) 640(0.8) 112(0.14) 48(0.06) 800

AR(2) 26(0.0325)  575(0.71875)  199(0.24875) 800

AR(@3) 3(0.00375) 1(0.00125) 796(0.995) 800

Data 1 is generated from AR(1) model. Table 4.1 says that the posterior probability of
supporting AR(1) is 0.8, the posterior probability of supporting AR(2) is 0.14 and that of
supporting AR(3) is 0.06. Therefore we conclude that AR(1) model is supported. For Data 2
and 3, we can get the similar results from Table 4.1. Also, our methodology can be easily

extended and applied to moving average process and to =~ ARMA(p, @ model.
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