EXISTENCE, UNIQUENESS AND NORM ESTIMATE
OF SOLUTIONS FOR THE NONLINEAR DELAY
INTEGRO-DIFFERENTIAL SYSTEM

JONG SEO PARK AND YOUNG CHEL KWUN

ABSTRACT. In this paper, we study the existence, uniqueness and norm estimate of solutions for the nonlinear delay integro-differential system.

1. INTRODUCTION

The existence for solutions of evolution equation with the nonlocal conditions in Banach space has been studied first by Byszewski [1].

In this paper, we study the existence, uniqueness and norm estimate of solutions for the following nonlinear delay integro-differential system with nonlocal initial condition:

\[
\begin{align*}
\frac{dx(t)}{dt} &= Ax(t) + f(t, x_t, \int_0^t k(t, s, x_s)ds), \quad t \in (0, T]; \\
x(t) + g(x_{t_1}, \ldots, x_{t_p})(t) &= \phi(t), \quad t \in [-h, 0],
\end{align*}
\]

where \(0 < t_1 < \cdots < t_p \leq T\) (\(p \in \mathbb{N}\)), bounded linear operator \(A\) is the infinitesimal generator of \(C_0\) semigroup on a Banach space.

\(C([-h, 0] : X)\) is a Banach space of all continuous functions from an interval \([-h, 0]\) to \(X\) with the norm defined by supremum,

\[
\begin{align*}
f : [0, T] \times C([[-h, 0] : X]) \times X &\to X, \\
g : [C([[-h, 0] : X])^p \to C([-h, 0] : X), \\
k : [0, T] \times [0, T] \times C([-h, 0] : X) &\to X
\end{align*}
\]

are given nonlinear functions and \(\phi\) is a initial function. If a function \(x\) is continuous from \([-h, 0] \cup [0, T]\) to \(X\), then \(x_t\) is an element in \(C([-h, 0] : X)\) which has pointwise
definition:
\[x_t(\theta) = x(t + \theta) \text{ for } \theta \in [-h, 0], \ t \in [0, T]. \]

2. Existence, Uniqueness and Norm Estimate Results

We consider the following integral equation
\[
\begin{aligned}
x(t) &= S(t)\{\phi(0) - g(x_{t_1}, \cdots, x_{t_p})(0)\} \\
&\quad + \int_0^t S(t-s)f(s, x_s, \int_0^s k(s, \tau, x_\tau)d\tau)ds, \quad t \in [0, T], \\
x(t) + g(x_{t_1}, \cdots, x_{t_p})(t) &= \phi(t), \quad t \in [-h, 0].
\end{aligned}
\] (2.1)

Then the continuous solution \(x(t) \in C([-h, T] : X) \) of (2.1) is called the mild solution of (1.1).

Let \(X \) be a Banach space with the norm \(\| \cdot \| \). We shall make the following assumptions of \(f, k, g \) and a \(C_0 \) semigroup \(S(t) \).

(H1) There exists a constant \(L \) such that
\[\| f(t, \varphi_1, \psi_1) - f(t, \varphi_2, \psi_2) \| \leq L(\| \varphi_1 - \varphi_2 \|_{C([-h, T] : X)} + \| \psi_1 - \psi_2 \|_{X}), \]
for \(\varphi_1, \varphi_2 \in C([-h, 0] : X), \psi_1, \psi_2 \in X, t \in [0, T] \) and \(f(0, 0, 0) \equiv 0 \).

(H2) The nonlinear function
\[k : [0, T] \times [0, T] \times C([-h, 0] : X) \rightarrow X \]
satisfies a Lipschitz condition
\[\| k(t, s, \varphi_1) - k(t, s, \varphi_2) \| \leq L_1 \| \varphi_1 - \varphi_2 \|_{C([-h, T] : X)}, \]
where \(\varphi_1, \varphi_2 \in C([-h, 0] : X), t, s \in [0, T], L_1 \) is constant and \(k(t, s, 0) \equiv 0 \).

(H3) The nonlinear function
\[g : C([-h, 0] : X)^P \rightarrow C([-h, 0] : X) \]
satisfies a Lipschitz condition
\[\| g(x_{t_1}, \cdots, x_{t_p})(s) - g(\tilde{x}_{t_1}, \cdots, \tilde{x}_{t_p})(s) \| \leq K \| x_t - \tilde{x}_t \|_{C([-h, 0] : X)}, \]
where \(x_t, \tilde{x}_t \in C([-h, 0] : X), s \in [-h, 0] \) and \(K > 0 \) is constant.

(H4) \(\phi \in C([-h, 0] : X) \).

(H5) \(\| S(t) \| \leq M \).

Now, we will prove the following theorem.
Theorem 2.1. Assume that the hypotheses (H1)-(H5) are satisfied and
\[M \{ K + LT(1 + L_1 T) \} < 1, \]
then nonlocal Cauchy problem (1.1) has unique mild solution.

Proof. Define the operator \(F : C([-h, T] : X) \to C([-h, T] : X) \) by
\[
(Fx_t)(0) = \begin{cases}
\phi(t) - g(x_{t_1}, \cdots, x_{t_p})(t), & t \in [-h, 0], \\
S(t) \{ \phi(0) - g(x_{t_1}, \cdots, x_{t_p})(0) \} \\
+ \int_0^t S(t - s) f(s, x_s, \int_0^s k(s, \tau, x_{t_\tau}) d\tau) ds, & t \in [0, T],
\end{cases}
\]
for \(x_t \in C([-h, T] : X) \).

We will prove that \(F \) is contractive mapping defined by \((Fx_t)(\theta) = (Fx_{t+\theta})(0) \).

If \(x_t, y_t \in C([-h, T] : X) \) and \(t + \theta \in [-h, 0] \),
\[
(Fx_t)(\theta) - (Fy_t)(\theta) = (Fx_{t+\theta})(0) - (Fy_{t+\theta})(0) \\
= g(x_{t_1}, \cdots, x_{t_p})(t + \theta) - g(y_{t_1}, \cdots, y_{t_p})(t + \theta).
\]
(2.2)

And if \(x_t, y_t \in C([-h, T] : X) \) and \(t + \theta \in [0, T] \), then
\[
(Fx_t)(\theta) - (Fy_t)(\theta) \\
= (Fx_{t+\theta})(0) - (Fy_{t+\theta})(0) \\
= S(t + \theta) \{ g(x_{t_1}, \cdots, x_{t_p})(0) - g(y_{t_1}, \cdots, y_{t_p})(0) \} \\
+ \int_0^{t+\theta} S(t + \theta - s) \left\{ f(s, x_s, \int_0^s k(s, \tau, x_{t_\tau}) d\tau) - f(s, y_s, \int_0^s k(s, \tau, y_{t_\tau}) d\tau) \right\} ds.
\]
(2.3)

From (2.2) and (H3),
\[
\|(Fx_t)(\theta) - (Fy_t)(\theta)\| \leq K\|x_t - y_t\|_{C([-h, T] : X)}.
\]

Hence
\[
\|(Fx_t) - (Fy_t)\|_{C([-h, T] : X)} = \sup_{-h \leq \theta \leq 0} \|(Fx_t)(\theta) - (Fy_t)(\theta)\| \\
\leq K\|x_t - y_t\|_{C([-h, T] : X)}.
\]
From 2.3 and (H1)-(H5),
\[
\|(F x_t)(\theta) - (F y_t)(\theta)\|
\leq \|S(t + \theta)\| \|g(x_{t_1}, \cdots, x_{t_p})(0) - g(y_{t_1}, \cdots, y_{t_p})(0)\|
+ \int_0^{t+\theta} \|S(t + \theta - s)\| \left\| f(s, x_s, \int_0^s k(s, \tau, x_{\tau}) d\tau) - f(s, y_s, \int_0^s k(s, \tau, y_{\tau}) d\tau) \right\| ds
\leq MK\|x_t - y_t\|_{C([-h, T] \setminus X)}
+ M \int_0^{t+\theta} L \left\{ \|x_s - y_s\|_{C([-h, T] \setminus X)} + \int_0^s L_1 |x_{\tau} - y_{\tau}|_{C([-h, T] \setminus X)} d\tau \right\} ds
\leq MK\|x_t - y_t\|_{C([-h, T] \setminus X)} + ML \int_0^{t+\theta} \left\{ 1 + L_1(t + \theta) \right\} \|x_s - y_s\|_{C([-h, T] \setminus X)} ds
\leq MK\|x_t - y_t\|_{C([-h, T] \setminus X)} + ML \left\{ 1 + L_1(t + \theta) \right\} (t + \theta) \|x_t - y_t\|_{C([-h, T] \setminus X)} \int_0^{t+\theta} ds
\leq M \{ K + LT(1 + L_1 T) \} \|x_t - y_t\|_{C([-h, T] \setminus X)}.
\]
Thus
\[
\|(F x_t)(\theta) - (F y_t)(\theta)\| = \sup_{-h < \theta < 0} \|(F x_t)(\theta) - (F y_t)(\theta)\|
\leq M \{ K + LT(1 + L_1 T) \} \|x_t - y_t\|_{C([-h, T] \setminus X)}.
\]
Since \(M \{ K + LT(1 + L_1 T) \} < 1\), \(F\) is a contractive mapping on \(C([-h, T] : X)\).
Consequently, an unique fixed point of \(F\) on \(C([-h, T] : X)\) is a unique mild solution of (1.1).
\[
\Box
\]
Next theorem is characteristic for the continuous dependence of the nonlinear functional integro-differential system (1.1) with the classical initial condition.

Theorem 2.2. Suppose that the hypotheses (H1)-(H5) are holds and
\[
M \{ K + LT(1 + L_1 T) \} < 1.
\]
Then for each \(\phi_1, \phi_2 \in C([-h, 0] : X)\) and mild solution \(x_1^t, x_2^t\) of the equations
\[
\begin{align*}
\frac{dx(t)}{dt} &= Ax(t) + f(t, x_t, \int_0^t k(t, s, x_s) ds), \quad t \in [0, T] \\
x_i(t) + g(x_{i_1}, \cdots, x_{i_p})(t) &= \phi_i(t), \quad t \in [-h, 0], \ i = 1, 2,
\end{align*}
\]
the following inequality is established
\[
\|(x_1 - x_2)_{C([-h, T] : X)} \leq \frac{M}{1 - MK} \exp \frac{ML(1 + L_1 T)T}{1 - MK} \|\phi_1 - \phi_2\|_{C([-h, 0] : X)}.
\]
Proof. Let \(\phi_i \in C([-h, 0] : X) \) \((i = 1, 2)\) and \(x^1_i \) \((i = 1, 2)\) be the mild solution of (2.4). For \(t + \theta \in [0, T] \),

\[
\begin{aligned}
x^1_t(\theta) - x^2_t(\theta) & = S(t + \theta)\{\phi_1(0) - \phi_2(0)\} - S(t + \theta)\{g(x^1_i, \ldots, x^1_{p_i})(0) - g(x^2_i, \ldots, x^2_{p_i})(0)\} \\
& \quad + \int_0^t S(t + \theta - s)\left\{f(s, x^1_s, \int_0^s k(s, \tau, x^1_\tau) d\tau) - f(s, x^2_s, \int_0^s k(s, \tau, x^2_\tau) d\tau)\right\} ds
\end{aligned}
\]

and for \(t + \theta \in [-h, 0] \),

\[
\begin{aligned}
x^1_t(\theta) - x^2_t(\theta) & = \phi_1(t + \theta) - \phi_2(t + \theta) + g(x^1_i, \ldots, x^1_{p_i})(t + \theta) - g(x^2_i, \ldots, x^1_{p_i})(t + \theta).
\end{aligned}
\]

From 2.6 and (H1)–(H5),

\[
\begin{aligned}
\|x^1_t(\theta) - x^2_t(\theta)\| & \leq M\|\phi_1 - \phi_2\|_{C([-h,0]:X)} + MK\|x^1_0 - x^2_0\|_{C([-h,T]:X)} \\
& \quad + ML\int_0^{t+\theta} L\left(\|x^1_\tau - x^2_\tau\|_{C([-h,T]:X)}\right) d\tau ds \\
& \leq M\|\phi_1 - \phi_2\|_{C([-h,0]:X)} + MK\|x^1_0 - x^2_0\|_{C([-h,T]:X)} \\
& \quad + ML(1 + L_1(t + \theta))\int_0^{t+\theta}\|x^1_\tau - x^2_\tau\|_{C([-h,T]:X)} d\tau ds.
\end{aligned}
\]

Therefore

\[
\begin{aligned}
\|x^1_t - x^2_t\|_{C([-h,T]:X)} & = \sup_{-h \leq \theta \leq 0} \|x^1_t(\theta) - x^2_t(\theta)\| \\
& \leq M\|\phi_1 - \phi_2\|_{C([-h,0]:X)} + MK\|x^1_0 - x^2_0\|_{C([-h,T]:X)} \\
& \quad + ML(1 + L_1T)\int_0^T\|x^1_\tau - x^2_\tau\|_{C([-h,T]:X)} d\tau ds.
\end{aligned}
\]

From 2.7 and (H3)–(H4),

\[
\|x^1_t(\theta) - x^2_t(\theta)\| \leq \|\phi_1 - \phi_2\|_{C([-h,0]:X)} + K\|x^1_0 - x^2_0\|_{C([-h,T]:X)}.
\]

Thus

\[
\begin{aligned}
\|x^1_t - x^2_t\|_{C([-h,T]:X)} & = \sup_{-h \leq \theta \leq 0} \|x^1_t(\theta) - x^2_t(\theta)\| \\
& \leq \|\phi_1 - \phi_2\|_{C([-h,0]:X)} + K\|x^1_0 - x^2_0\|_{C([-h,T]:X)}.
\end{aligned}
\]
Since $M \geq 1$ and $MK < 1$, then 2.8 and 2.9 imply that
\[\|x_t^1 - x_t^2\|_{C([-h,T]:X)} \leq \frac{M}{1 - MK} \|\phi_1 - \phi_2\|_{C([-h,0]:X)} + \frac{ML(1 + L_1 T)}{1 - MK} \int_0^T \|x_s^1 - x_s^2\|_{C([-h,T]:X)} ds. \]

By Gronwall's inequality,
\[\|x_t^1 - x_t^2\|_{C([-h,T]:X)} \leq \frac{M}{1 - MK} \|\phi_1 - \phi_2\|_{C([-h,0]:X)} \exp \left(\frac{ML(1 + L_1 T)T}{1 - MK} \right). \quad \square \]

Remark 2.1. Let $0 < t_1 < \cdots < t_p \leq T$ ($p \in N$), Theorems 2.1 and 2.2 can be employed the following g defined by
\[g(x_{t_1}, \cdots, x_{t_p})(s) = \sum_{k=1}^p c_k x(t_k + s), \]
where $x \in C([-h,T]:X)$, $s \in [-h,0]$ and c_k ($k = 1, \cdots, p$) is constant satisfying
\[(2.10) \quad M \left\{ \sum_{k=1}^p |c_k| + LT(1 + L_1 T) \right\} < 1. \]

Remark 2.2. Let $0 < t_1 < \cdots < t_p$ and ϵ_k ($k = 1, \cdots, p$) is constant such that $0 < t_1 - \epsilon_1$ and $t_{k-1} < t_k - \epsilon_k$ ($k = 2, \cdots, p$). If the nonlinear function g is defined by
\[g(x_{t_1}, \cdots, x_{t_p})(s) = \sum_{k=1}^p \frac{c_k}{\epsilon_k} \int_{t_k - \epsilon_k}^{t_k} x(\tau + s) d\tau, \]
where $x \in C([-h,T]:X)$, $s \in [-h,0]$ and c_k ($k = 1, \cdots, p$) is constant satisfying 2.10. For $s \in [-h,0]$, since
\[\|g(x_{t_1}, \cdots, x_{t_p})(s) - g(y_{t_1}, \cdots, y_{t_p})(s)\| = \left\| \sum_{k=1}^p \frac{c_k}{\epsilon_k} \int_{t_k - \epsilon_k}^{t_k} (x(\tau + s) - y(\tau + s)) d\tau \right\| \leq \left(\sum_{k=1}^p |c_k| \right) \|x_t - y_t\|_{C([-h,T]:X)}, \]
Theorems 2.1 and 2.2 can be employed the function g.

ACKNOWLEDGMENTS

The authors are grateful to the referee for his careful reading and noting errors in the original manuscript.
REFERENCES

(J. S. PARK) DEPARTMENT OF MATHEMATICS EDUCATION, CHINJU NATIONAL UNIVERSITY OF EDUCATION, 380 SINAN-DONG, JINJU, GYEONGNAM 540-742, KOREA
E-mail address: parkjs@cue.ac.kr

(Y. C. KWUN) DEPARTMENT OF MATHEMATICS, DONG-A UNIVERSITY, 840 HADAN-DONG, SADA-GU, BUSAN 604-714, KOREA
E-mail address: yckwun@daunet.donga.ac.kr