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Bayes Prediction Density in Linear Models

S. H. KimV

Abstract

This paper obtained Bayes prediction density for the spatial linear model with
non-informative prior. It showed the results that predictive inferences is completely
unaffected by departures from the normality assumption in the direction of the
elliptical family and the structure of prediction density is unchanged by more than
one additional future observations.

Keywords : Prediction density, Non-informative priors; Linear Regression Model; Elliptical
Errors;, Mixture of multivariate t density.

1. Introduction

Let’'s consider the problem of prediction on Z; based on p(Z;) , where
Zl = (Zl (xl)r L) an(xnl)), ’ ZZ = (Zn1+1 (xn1+l): () Zn(x n))’Wlth n=m +n2 and
X1y %25 « « s X s Xm+1s « . X, are known locations on research region K. On a given

loss function L (Z,, p(Z,)), we could minimize E[ L (Z,, p(Z,) )] with respect to
predictor p. Regardless of which loss function is specified, a well-known result of Bayesian
decision theory shows that the optimal predictor p* is derived by minimizing with respect to
b, ELL(Zy, (Z)))IZ,].

Thus the optimal predictor p" should be depends on the predictive density fB(22 | Z)) .
Hence, the predictive density is very important role in spatial statistics.

Suppose that Z(x) is a real-valued stationary continuous random surfaces at location x

with some smooth trend surfaces plus a spatially correlated residual process such as,

Z(x) = Ax) B + &(x),

where Ax) = (1(x),/(x),..,fi{x)) is a known vector and 8 is a kX1 vector of
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unknown regression coefficients.
The mean of Z(x) is E[Z(x)]= Ax) B and the variance is ¢°.

In general, we observe Z; = (Z(xy), .., Z(x,))" and will predict the future
observations, Zy = (Z(% n+1), . -, Z(x,))" . Then we have,
Z,=Fp+e,,

, where F= {f(x))} izl =1,., k., I=1,., nand g, = (e(xy), .,e(x,))". And we can

partition , Z, = Z LV F= £ and €= (€1 with Z;, n; %1 vector, F;, n; Xk matrix
Zy F, &y

and ¢€;, n; X1 vector.

For the following discussion, let the variance-covariance matrix be

B _ 212,06 Z(0)
Var(Z,) = 022(0)“62[2;(6) (8]

Let 8 be a pXx1 structured parameter vector of the variance and covariance matrix. And
for the following discussion, let Z{(6)= % .

The Bayes prediction density is defined as,
P (zal21) = ff(22|zl, n)a(rlz))dr, (1.1)

where the integral is finite. The of)timal predictor of Z, based on =z; should be depends on
fB(zz | z;) with respect to Bayesian point of view. And r is the parameter vector that
indexes the pdf of z and #(7) is the prior. In our case, 7= (¢°, 6, B). For a(7), because
B is a location parameter, we expect that our prior about /S has no relationship with those
about ¢° and @ and a prior might expect @ and £ to be independent, leading to the use

of Jeffrey's prior. Hence suppose that the non-informative prior of (8, ¢°,8) is

(8, 6%, 0)< 7(0) /&, where B R¥,62>(,6<RP.

The computational formulas for the proof of Section 3 will be contained on Section 2. We
will investigate the Bayes prediction density under elliptical errors assumption, which is more

robust assumption than normal errors in Section 3.



Bayes Prediction Density in Linear Models 799

2. Some Quadratic Forms

Firstly, we state here the computational formula for the difference between recursive
updatings of weighted least squares estimates in the general linear model when more than one

additional observations become available. Let B=(F3'P'F3'z, and
23\1 = (F121—11F1)_1F1'21—1121-

[Proposition 2.11 (B — B) = — (FZ'H™'A° Snh(z, — B),

where Sy, = Zp — Sy 31151, A = (Fy — 53 21 F))and B = AB, + 2y 3! 2.

Secondly, we consider the partition of residual sum of squares, which is useful for Section
3. The proof can be obtained with the result of Propostion 2.1.

Let SSE=(z, —F B) 3 '(2, —FB)and SSE, =(z;, —F, 1) 2y ' (2, —F, B).
[Proposition 22] SSE= SSEI + (22 - B)I [ 222_1 + A( Fllz‘u _IFI)‘IA, ]—1(22 - B)

Note: Here we can find very interesting facts that B is a universal Kriging and
& [Ty, + A(F,"27'F)) "'A’lis the squared error of the universal Kriging. Kriging is just
the best linear unbiased predictor under the general linear model. See Cressie(1991) and
Ripley (1981).

3. Elliptical Errors Model
The linear regression model with non-random regressors and elliptical errors,

where Z,e R", fe R*, u,~N(0, %) and ¥ is a positive function and T is a
positive random variable with distribution G, independent of #,. The above model implies

that conditional on T, (Z,| T, B, &*,2)~ N(FRB, (X ¥(D).
And the distribution of Z,| 8, ¢* , X s

(2,18, &, 3)x
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J, 13 R ) e [ S 0THD (2= FEY 57 (2, FA)]dG(D.

From the above expression, the various distribttions including the & -contaminated
normal and multivariate exponential can be generated (Muirhead(1983, pp. 32-34)).

[Theorem] Let 7 (8, o2, 8)c x(6) / &*>. Then the Bayes prediction density of Z,, under the

above elliptical errors model, is for any 7T,

P2y 2)) fw Fry (223 B, SSE\ Vol (0~ B))

1

_ n—k

] -+ —( )
RV SRR 21Zyl P (SSE) P Ta(6)d6,

where Vo= [Zp1+ A(Fy'Z0'F) A’ and £, (29;B,SSE Vel (n,— k) is a  (nyx1)
multivariate ¢ pdf with the mean vector, E, the variance-covariance matrix,
SSE V4] (ny—k), and n;—k degrees of freedom.

[Proof] We consider the prediction density under the spatial linear model with elliptical errors.
The Bayes prediction density can be expressed by (1.1) as follows,

fPalz) = [fz] 21, 0) 7(82))d0 (3.1)

. where f(z12,, 0) = [ f (2121, 6, T)dG(T) . (3.2)

Consider the integrand of (3.2). By the Bayes rule, it can be expressed by,

f(z1,210,T)
f(21|l9, T)

flzylzy, 6, T)= (3.3)

The nominator and denominator of (3.3) can be expressed with respect to elliptical error model
as follows,

fay.2l0.T) = [, [ Aa. 21080 T)x(d, 86, T)dpdd and

fal 6.7V =], [ A=z10.8.6. T)a(, B0, T)dgdd’, (3.4)
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where 7 (6%, 816, T) o< %

Since Z,,2Z,18, ¢, 8, T~N(FB, &S W T)),

fa.210. 1) [ [ i
: eXD{—m(zn*Fﬁ)'E_l(zn—Fﬁ)] —017 dBde’ . (35)

Consider (z,— FB)'3Y '(z,— FB). Then this quadratic form can be partitioned into two parts

as follows,
(2,—FBR)' 2 Y z,—FB) = SSE + (B—B) (FZ'F)(L-7). (36)
By (3.6), (3.5) can be expressed by,

1

1 1
f(Zl ,22| 8, T) choz>0 |022¥/2(T)|”2 exp{— ZUZW(T) SSE} s

. I S S VP | .
L ool 5agocg (B (FZP(B-8) ds1ar 7

By the well-known fact, Blo*, 8, T~N(B, C¥(T) (FX'F)™Y), 37 is

1G22l 0, T) = [ oo eo{ = g agry S B8
1 1 )
NP (FEIR) 72 = do’.

Using both the technique of change of variable and the property of Gamma function, (3.8) can
be expressed by,

n—~k
- - (3.9)

_1 1
f(z( ,2516, T) < |[FFZVF| %|3 ?%(SSE)

Similarly, it can be shown that
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(Zky

-1 _1 _
(2116, T) < |F Z FL 213yl *(SSE) % . (3.10)

Since Az9lzy, T, 0) is the ratio between (3.9) and (3.10), we have
n—k

-1 -_ZL __ZL (53
2 _Fl _LIEI _ESSE) — ok (3.11)
IFy 2, PR P Isyl P(SSE) 2

f(zz Izl , T, 9)06

Because (3.11) is not dependent on 7, (3.11) is a same density as f(zy|z;, @) with respect
to (3.2). The second integrand of (3.1), #(f]z;) can be expressed by Bayes rule as follow,

m(fz,) < f(z16) (6. (3.12)

Since the posterior density of Z;, f(z;|8) can be obtained by (3.10), hence (3.12) is,

m—k

_1 _1 - ) .
Bz )< \FY ZVR 2120 2(SSE) % ") (3.13)

When we put the results of (3.11) and (3.12) into the integrands of (3.1), the prediction

density 2(z,|2;) can be written by,

(n—k

) _1 _ 1
218 2 |F YR (6 de. (3.14)

fPzlz) e [ (SSE)

_{n—Fk
Now we consider the integrands of (3.14). First, consider (SSE) 2 We can express this
by Proposition 2.2 as follows,

_(n—F
SSE 2 = 1 _
[1+ nll—k (ZZ_B)’(SSEIV(;/(nl_k))_l(zz—B)] 2
M2 o m—k
- (SSE,) ?* (SSE)) % . (3.15)

Secondly, using the simple property of determinant function, we can express,

-1 _1 1
2

151 %2 =1Zp) %15 (3.16)

Finally, we consider the determinant function such as
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-1 L1 -1
[F L =R SR P AR AR ) GBI

Using the simple property of determinant function, we can derive

_1 _1 _1
1Sy + AF, Sp F) Al 2 =15, P U+ ASRLAF Sy, F)7Y 2. G18)

Using from (3.15) to (3.18), the integrand of (3.14) can be expressed by,

_("‘k) _1 1 _..L
(SSE) % "|31 *|F X 'F| ? n(@) < |SSE,V,/ (n,—Hk)| ?
l o (3.19)
[1+ —L— (2,— B) (SSE\V,/ (n,— B) " (2,— B)] ?

nl—k

1 n—k

IR T - ()
\FU 2R 21Ey % (SSEy) )}

When we put (3.19) onto (3.14), the prediction density f®(z,|z;) can be obtained. W

Remark: We showed that the prediction density of Z, based on 2z; is the mixture of

multivariate ¢ density under elliptical errors. It is noted that Handcock and Stein(1993)
obtained the same prediction density under multivariate normal errors for only one future
observation. Hence our result extended theirs such that the prediction density is unaffected by
a change in the error distribution from multivariate normal to elliptical and the structure of
density is unchanged by more than one additional future observations. Handcock and Wallis

(1994) used the Handcock and Stein (1993)‘s result too.
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