EQUIVALENT CONDITIONS FOR
A DIRECT INJECTIVE MODULE

SU-JEONG CHOI AND CHANG-WOO HAN

ABSTRACT. The purpose of this paper is to find the necessary and sufficient conditions for a module to be a direct injective module. Moreover, we focus on the possibility that a direct injective module can be related with arbitrary module and Hom functor like an injective module.

1. INTRODUCTION

Throughout, R is a ring with unity, all modules are unitary R-modules and all maps are R-maps. A module M is said to be direct injective if given a direct summand N of M with inclusion $i : N \rightarrow M$ and any monomorphism $f : N \rightarrow M$, there exists an endomorphism g of an R-module M such that the diagram

\[
\begin{array}{ccc}
M & \xrightarrow{g} & M \\
\downarrow{i} & & \\
O & \xrightarrow{f} & N
\end{array}
\]

commutes, i.e., $g \circ f = i$. The concept of a direct injective module as a generalization of a quasi-injective module was introduced by Nicholson [2] in 1976. Xue [3] showed the characterizations of hereditary rings and semisimple rings by using direct projective modules and direct injective modules.

In this paper, we obtain the necessary and sufficient conditions for a module to be a direct injective module. As the results of it, we obtain equivalent conditions for a module to be a direct injective module.

Received by the editors June 13, 2001, and in revised form November 13, 2001.
2000 Mathematics Subject Classification. 16D50.
Key words and phrases. direct injective module, Hom functor.
This paper was supported by research fund of Dong-A University, 2000.

2. **Main Results**

Theorem 2.1. A module M is direct injective if and only if for any direct summand N of M and a monomorphism $f : N \to A$, there exists a map $f' : A \to N$ such that $f' \circ f = I_N$, where A is a submodule of M.

Proof. Assume that M is a direct injective module. Let N be a direct summand of M, A be a submodule of M, and $g : A \to M$ be a monomorphism. Then for each monomorphism $f : N \to A$, there exists a map $h \in \text{End}(M)$ which completes the following diagram

\[
\begin{array}{ccc}
M & \overset{i}{\rightarrow} & N \overset{f}{\rightarrow} A \overset{g}{\rightarrow} M \\
\downarrow{h} & & \downarrow{h} \\
\end{array}
\]

as a commutative diagram, i.e., $h \circ g \circ f = i$.

Let $p : M \to N$ be the projection map and define a map $k : A \to M$ by $k = h \circ g$.

Let $f' = p \circ k$. Then we have

\[
f' \circ f = (p \circ k) \circ f = p \circ (h \circ g) \circ f = p \circ (h \circ g \circ f) = p \circ i = I_N,
\]

i.e.,

\[
\begin{array}{ccc}
M & \overset{i}{\rightarrow} & N \overset{f}{\leftarrow} A \overset{g}{\rightarrow} M. \\
\downarrow{h} & \overset{f'}{\leftarrow} & \end{array}
\]

Hence, $f' \circ f = I_N$.

Conversely, assume that N is a direct summand of a module M and $i : N \to M$ be the inclusion map and let $f' : M \to N$ be a map such that $f' \circ f = I_N$, i.e.,
\[\begin{array}{cccc}
O & \longrightarrow & N & \xrightarrow{f} & M. \\
\uparrow & & \downarrow^{f'} & & \downarrow^{f} \\
\end{array} \]

Define a map \(h : M \longrightarrow M \) by \(h = i \circ f' \), then
\[h \circ f = i \circ f' \circ f = i \circ I_N = i. \]

So we have the diagram
\[\begin{array}{cccc}
M & \xleftarrow{i} & \quad & \downarrow^{h} \\
& & \downarrow & \\
O & \longrightarrow & N & \xrightarrow{f} & M \\
\end{array} \]

as a commutative diagram, i.e., \(h \circ f = i \). Hence, \(M \) is a direct injective module. This completes the proof. \(\square \)

Theorem 2.2. A module \(M \) is direct injective if and only if, given any direct summand \(N \) of \(M \) and any map \(g : N \longrightarrow M \), for each monomorphism \(f : N \longrightarrow M \), there exists a map \(h \in \text{End}(M) \) such that the following diagram
\[\begin{array}{cccc}
M & \xleftarrow{g} & \quad & \downarrow^{h} \\
& & \downarrow & \\
O & \longrightarrow & N & \xrightarrow{f} & M \\
\end{array} \]
commutes, i.e., \(h \circ f = g \).

Proof. Assume that a module \(M \) is direct injective. Then by Theorem 2.1, there exists a map \(f' : M \longrightarrow N \) such that \(f' \circ f = I_N \). Therefore define a map \(h : M \longrightarrow M \) by \(h = g \circ f' \). Then
\[h \circ f = g \circ f' \circ f = g \circ I_N = g. \]
Hence there exists a map \(h \in \text{Hom}(M) \) such that \(h \circ f = g \).

Conversely, suppose that given any direct summand \(N \) of \(M \) and any map \(g : N \longrightarrow M \), for each monomorphism \(f : N \longrightarrow M \), there exists a map \(h \in \text{End}(M) \)
such that \(h \circ f = g \). i.e., the diagram

\[
\begin{array}{ccc}
M & \downarrow g & \\
O & \xrightarrow{h} & N \\
& \xrightarrow{f} & M
\end{array}
\]

is commutative. If we take an inclusion map \(i : N \to M \) instead of arbitrary map \(g : N \to M \), then we have an immediate consequence from the above assumption and the definition of direct injective module.

\[\blacksquare\]

Theorem 2.3. A module \(M \) is direct injective if and only if, given an exact sequence

\[
O \to A \to B \to C \to O
\]

for a direct summand \(A \) of \(M \) and submodules \(B, C \) of \(M \), then

\[
O \to \text{Hom}(C, M) \xrightarrow{F_{\beta}} \text{Hom}(B, M) \xrightarrow{F_{\alpha}} \text{Hom}(A, M) \to O
\]

is exact sequence.

Proof. Assume that a module \(M \) is direct injective and let \(A \) be a direct summand of \(M \) and \(B, C \) be submodules of \(M \). Since \(\text{Hom}(, M) \) is a left exact contravariant functor, for an exact sequence

\[
O \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to O,
\]

to prove that

\[
O \to \text{Hom}(C, M) \xrightarrow{F_{\beta}} \text{Hom}(B, M) \xrightarrow{F_{\alpha}} \text{Hom}(A, M) \to O
\]

is exact sequence, it is enough to show that \(F_{\alpha} \) is an epimorphism. For arbitrary map \(g \in \text{Hom}(A, M) \), since a module \(M \) is direct injective, by Theorem 2.1, we have \(\alpha' : B \to A \) with \(\alpha' \circ \alpha = I_A \). Define a map \(f : B \to M \) by \(f = g \circ \alpha' \). Then there is a map \(f \in \text{Hom}(B, M) \) such that

\[F_{\alpha}(f) = f \circ \alpha = g \circ \alpha' \circ \alpha = g \in \text{Hom}(A, M)\]

The diagram
commutes. Hence $F\alpha$ is an epimorphism.

Conversely, let A be a direct summand of M and B, C be submodules of M. Assume that for an exact sequence

$$O \longrightarrow A \xrightarrow{\alpha} B \xrightarrow{\beta} C \longrightarrow O,$$

the sequence

$$O \longrightarrow \text{Hom}(C, M) \xrightarrow{F\beta} \text{Hom}(B, M) \xrightarrow{F\alpha} \text{Hom}(A, M) \longrightarrow O$$

is exact. If we take M instead of B from the above assumption, then for an arbitrary map $g : A \longrightarrow M$ and each monomorphism $\alpha : A \longrightarrow M$, there exists a map $h \in \text{End}(M)$ such that $h \circ \alpha = g$, i.e.,

$$\begin{array}{c}
O \longrightarrow A \xrightarrow{\alpha} M.
\end{array}$$

Hence by Theorem 2.2, the module M is direct injective. \hfill \Box

From Theorem 2.3, we know that direct injective modules can be defined by Hom functor with some conditions.

Theorem 2.4. A module M is direct injective if and only if for each monomorphism $f : N \longrightarrow M$, a direct summand N and a module K, any map $g : N \longrightarrow K$ can be extended to a map $h : M \longrightarrow K$ which completes the diagram

$$\begin{array}{c}
K \\
\text{or} \\
O \longrightarrow N \xrightarrow{f} M
\end{array}$$

commutes, i.e., $h \circ f = g$.\hfill \Box
Proof. (\Rightarrow) Suppose that M is a direct injective module. Let N be a direct summand of M. Then by Theorem 2.1, for each monomorphism $f : N \rightarrow M$, there is a map $f' : M \rightarrow N$ such that

$$f' \circ f = I_N.$$

For an arbitrary module K and any map $g : N \rightarrow K$, define a map $h : M \rightarrow K$ by

$$h = g \circ f'.$$

Then

$$h \circ f = g \circ f' \circ f = g \circ I_N = g.$$

Therefore, there is a map $h : M \rightarrow K$ such that

$$h \circ f = g.$$

Hence, we have the diagram

\[
\begin{array}{ccc}
K & \overset{h}{\longrightarrow} & M \\
\downarrow{g} & & \downarrow{f'} \\
O & \longrightarrow & N & \overset{f}{\longrightarrow} & M
\end{array}
\]

as a commutative diagram.

(\Leftarrow) The converse proof is trivial by taking inclusion map i instead of arbitrary map g. \hfill \square

Theorem 2.5. For a module M, let A be a direct summand of M and B, C be submodules of M. M is a direct injective module if and only if, given an exact sequence

\[
O \longrightarrow A \overset{\alpha}{\longrightarrow} B \overset{\beta}{\longrightarrow} C \longrightarrow O
\]

we have

\[
O \longrightarrow \text{Hom}(C, K) \overset{F\beta}{\longrightarrow} \text{Hom}(B, K) \overset{F\alpha}{\longrightarrow} \text{Hom}(A, K) \longrightarrow O
\]

as an exact sequence, for any module K.

Proof. Assume that M is a direct injective module. Let A be a direct summand of M and B, C be submodules of M. Since $\text{Hom}(\cdot, K)$ is a left exact contravariant functor, in order to prove that
\[\begin{array}{cccccc}
O & \longrightarrow & \text{Hom}(C, K) & F_\beta \longrightarrow & \text{Hom}(B, K) & F_\alpha \longrightarrow & \text{Hom}(A, K) & \longrightarrow & O \\
& & \downarrow F_\beta & \downarrow F_\alpha & & \downarrow F_\alpha & \downarrow F_\alpha & & \\
& & \text{Hom}(B, K) & \longrightarrow & \text{Hom}(A, K) & \longrightarrow & O \\
\end{array} \]

is an exact sequence for an exact sequence
\[\begin{array}{cccccc}
O & \longrightarrow & A & \alpha \longrightarrow & B & \beta \longrightarrow & C & \longrightarrow & O \\
& & \downarrow \alpha & & \downarrow \beta & & \downarrow \beta & & \\
& & A & \longrightarrow & B & \longrightarrow & C & \longrightarrow & O \\
\end{array} \]

and an arbitrary module \(K \), we will show that \(F_\alpha \) is an epimorphism, i.e., we want to complete the diagram

\[\begin{array}{ccc}
K & \longrightarrow & O \\
& \downarrow g & \downarrow \alpha \\
O & \longrightarrow & A \\
& \downarrow \alpha & \downarrow \alpha \\
& \longrightarrow & B \\
\end{array} \]

for an arbitrary map \(g \in \text{Hom}(A, K) \). Since \(M \) is a direct injective module, we have \(\alpha' : B \longrightarrow A \) such that \(\alpha' \circ \alpha = I_A \). Define a map \(f : B \longrightarrow K \) by
\[f = g \circ \alpha'. \]

Then
\[F_\alpha(f) = f \circ \alpha = g \circ \alpha' \circ \alpha = g \in \text{Hom}(A, K). \]

Hence, we have the diagram

\[\begin{array}{ccc}
K & \longrightarrow & O \\
& \downarrow g & \downarrow \alpha \\
O & \longrightarrow & A \\
& \downarrow \alpha & \downarrow \alpha' \\
& \longrightarrow & B \\
\end{array} \]

as a commutative diagram. Therefore, \(F_\alpha \) is an epimorphism.

Conversely, let \(A \) be a direct summand of \(M \) and \(C \) be a submodule of \(M \). Assume that for an exact sequence
\[\begin{array}{cccccc}
O & \longrightarrow & A & \alpha \longrightarrow & M & \beta \longrightarrow & C & \longrightarrow & O \\
& & \downarrow \alpha & & \downarrow \beta & & \downarrow \beta & & \\
& & A & \longrightarrow & M & \longrightarrow & C & \longrightarrow & O \\
\end{array} \]

and an arbitrary module \(K \), the sequence
\[\begin{array}{cccccc}
O & \longrightarrow & \text{Hom}(C, K) & F_\beta \longrightarrow & \text{Hom}(M, K) & F_\alpha \longrightarrow & \text{Hom}(A, K) & \longrightarrow & O \\
& & \downarrow F_\beta & \downarrow F_\alpha & \\
& & \text{Hom}(M, K) & \longrightarrow & \text{Hom}(A, K) & \longrightarrow & O \\
\end{array} \]

is an exact sequence, i.e., we have the diagram
commutative. Then for an arbitrary map \(g : A \rightarrow K \) and each monomorphism \(\alpha : A \rightarrow M \), there exists a map \(h : M \rightarrow K \) which completes the following diagram

\[
\begin{array}{ccc}
K & \xrightarrow{h} & M \\
\xrightarrow{g} & \downarrow & \downarrow \\
O & \xrightarrow{\alpha} & A \\
\xrightarrow{} & & \xrightarrow{\alpha'}
\end{array}
\]

as a commutative diagram, i.e., \(h \circ \alpha = g \). This implies that \(M \) is a direct injective module. This completes the proof. \(\square \)

Theorem 2.6. \(M \) is a direct injective module if and only if for every pair of direct summands \(A, B \) of \(M \), the injection \(i : A \rightarrow M \), and every monomorphism \(f : A \rightarrow B \), there exists a map \(g : B \rightarrow M \) which completes the following diagram

\[
\begin{array}{ccc}
M & \xrightarrow{g} & O \\
\xleftarrow{i} & \downarrow & \downarrow \circ \alpha \\
A & \xrightarrow{f} & B
\end{array}
\]

as a commutative diagram, i.e., \(g \circ f = i \).

Proof. (\(\Rightarrow \)) Suppose that \(M \) is a direct injective module. Then for the injection maps \(i : A \rightarrow M \), \(i' : B \rightarrow M \) and each monomorphism \(f : A \rightarrow B \), there exists a map \(h \in \text{End}(M) \) which completes the diagram

\[
\begin{array}{ccc}
M & \xrightarrow{h} & A \\
\xleftarrow{g} & \downarrow & \downarrow \circ \alpha \\
O & \xrightarrow{i} & B \\
\xrightarrow{} & & \xrightarrow{i'}
\end{array}
\]

commutes, i.e., \(h \circ i' \circ f = i \). Let

\[g = h \circ i' \]
then we have $g \circ f = i$. Therefore, there exists a map $g : B \rightarrow M$ such that

$$g \circ f = i.$$

This completes the proof of “\Rightarrow” part.

(\Leftarrow) The converse case is omitted since it is the same as the “\Rightarrow” part by replacing B with M. \hfill \Box

Through the above long proofs, we know that from Theorem 2.1 to Theorem 2.6, they are equivalent. We want to focus on the possibility that a direct injective module can be related with arbitrary module and Hom functor like an injective module.

REFERENCES

(S.-J. Choi) Department of Mathematics, Dong-A University, Hadan-dong, Saha-gu, Busan 604-714, Korea
E-mail address: purity100@hotmail.com

(C.-W. Han) Department of Mathematics, Dong-A University, Hadan-dong, Saha-gu, Busan 604-714, Korea
E-mail address: cvhan@mail.donga.ac.kr