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A Note On L, Strongly Consistent Wavelet Density Estimator

for the Deconvolution Problem?

Sungho Lee?)

Abstract

The problem of wavelet density estimation is studied when the sample observations
are contaminated with random noise. In this paper a linear wavelet estimator based

on Meyer-type wavelets is shown to be L, strongly consistent for f (x) with

bounded support when Fourier transform of random noise has polynomial descent or
exponential descent.
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1. Introduction

Let X and Z be independent random variables with density functions f(x) and ¢ (2),
respectively, where f(x) is unknown and ¢ (z) is known. One observes a sample of random

variables Y, = X, + Z; , i=1,2,--,n. The objective is to estimate the density function

7(x) where g(y) is the convolution of f(x) and ¢q(z), g(y) = f_oooo f(y—2) q(2) dz.

The problem of measurements being contaminated with noise exists in many different
fields(see, for example, Louis(1991), Zhang(1992)). The most popular approach to the problem
was to estimate f(x) by a kernel estimator and Fourier transform (see, for example, Carroll
and Hall (1988), Taylor and Zhang(1990), Fan(1991)). Fan(1991) proved that the estimators of
f(x) are asymptotically optimal pointwise and globally if the Fourier transform of the kernel
has bounded support.

The present paper deals with estimation of a deconvolution density using a wavelet
decomposition. The underlying idea is to present f(x) via a wavelet expansion and then to
estimate the coefficients using a deconvolution algorithm. Wavelet methods, introduced to
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statistics by the work of Donoho and Johnstone in early 90's, show remarkable potential in
nonparametric function estimation{see, for example, Donoho, Johnstone, Kerkyacharian and
Picard(1995,1996)). There are several important families of wavelets(for example, Haar's
wavelets, Meyer’'s wavelets, Franklin’s wavelets, Daubechies’ compactly supported wavelets).
In this work we consider a wavelet decomposition based on Meyer-type wavelets rather than
on wavelets with bounded support. Meyer-type wavelets allow immediate deconvolution and
form a subset of the set of band-limited wavelets, that is, the Fourier transform of the
wavelet has bounded support. Pensky and Vidakovic(1999) proposed the estimators based on

Meyer-type wavelets to estimate f(x) for two different cases in the well-known Sobolev
space H® : the case when the distribution of the error Z is supersmooth, that is, the Fourier
transform q of ¢ has exponential descent, and the case when the distribution of the error Z

is ordinary smooth, that is, ¢ has polynomial descert. They showed that, in the case of
exponential descent, the linear wavelet estimator (2.7) ir. Section 2 is asymptotically optimal in
the sense that the rate of convergence of the mean integrated squared error can’t be
improved. However, in the case of polynomial descent, the linear wavelet estimator fails to

provide the optimal convergence rate when « is unknown. With the same linear estimator
(2.7) Walter(1999) investigated the rates of convergence of the mean squared error under
various hypotheses.

Taylor and Zhang(1990) showed the uniform and L; strong consistency of the estimator
constructed by kernel and Fourier transform in deccnvolution density estimation. In this
paper the linear wavelet estimator (2.7) in Section 2 is shown to be a L; strongly
consistent estimator for f(x) with bounded support whaen Fourier transform ¢ (&) of ¢(2)
has polynomial descent or exponential descent. Gamma or double exponential distribution
functions satisfy polynomial descent and normal or Cauchy distribution functions satisfy

exponential descent.

2. Preliminaries

Throughout this paper we use the notation ?(E) for the Fourier transform
f_ e " Ax)dx of a function f(x). We assumed that the reader is familiar with the

elements of wavelet theory(see, for example, Vidakovic(1999)). Assume that f(x) is square

integrable and that ¢ (&) does not vanish for real & If @(x) and ¢ (x), respectively, are a
scaling function and a wavelet generated by an orthonormal multiresolution decomposition of

L?(—o0, ), then for any integer m the density function f(x) allows the following

representation:
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fx) = ;Zam,k%n,k(x) + ;ngbj,k%,k(x) , (2.1)

where @, {(x) = 2"2p(2"x — k) and ¢; (%) = 22 4(2°x — k), and the coefficients

am i and b;, have the forms

A,k = f_Z?Dm,k(x)f(x)dX, bj,k= fio(/'j’k(x)f(x)dx

respectively.
A special class of wavelets are band-limited wavelets, the Fourier transform of which have

bounded support. In this paper, we shall use a particular type of band-limited wavelet, a
Meyer-type wavelet (see Walter(1994, 1999)). Let P be a probability measure with support
in [—#x/3, n/3]. Define the scaling function ¢(x) and the wavelet function ¢ (x) as the

functions whose Fourier transforms are

pw = [[Tar] " w@ = e [ [0 ap]

w—1 wl/2—-x

the nonnegative square roots of the integrals. Then @(w) and ¢ @) both have bounded

support: supp ¢ C [ —47/3, 47/3] and supp ¢C £, U 2, with
£, =1-8n/3,—2x/3]1, £, =12x/3,8x/3].

Moreover, @(w) = 1 if |w]| < 27/3. In this paper we need to ensure that ¢ (x) and ¢ (x)
have sufficient rate of descent as |x| — o ., Hence we choose P to be smooth, so that
the function ¢@(w) and @(w) are s=2 times continuously differentiable on ( —oo, o).
Since @(w) and ¢(w) have bounded support, this implies that

Co= sup, [l lxl*+1)1<Co0 , Cyp=sup,[1¢()1( |x]°+1)]< 0 |

We also assume that
f_ooqo(x) dc =1 and ;Zqo(x—k) = 1. (2.2)

The coefficients a,,, and &;, can be viewed as mathematical expectations of the

functions #,, , and v;,
mi= [ _umiD gAY, bus= [ _vni)e()dy, 23)
provided that ., ,(» and v, ,(y) are solutions of the following equations:

f_mooq(y—x) U,k (3) dY = @i (%) , f_ozoq(y—x) Uk (D dy = ¢y (). (2.4)

Taking the Fourier transform of both sides in (2.4), we obtain
U, (X) = 22 U (2" x— k), v, p(x) = 9112 Vj(Zix—k), where U,,(-) and V,(-) are the

inverse Fourier transforms of the functions
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Un(w) = o)) ¢(=2"w) , V(o) = ¢w) ¢(—2 o), (2.5)
respectively. Therefore, estimating a,, , and b;, by

“~

Oy = 1" lem/z U 2" Yi— k), bjp=nt 212”2 Vi(2'Y;— k) (2.6)
and truncating the series (2.1), we obtain a linear wavelet estimator

In this paper the estimator (2.7) will be shown to be L; strongly consistent estimator for

f(x) with bounded support function, supp f C [— b, b].

3. L, Strong Consistency

The main resuit of this paper is Theorem 3.1 which establishes the L, strong consistency

of the linear wavelet estimator 7, (x) to Ax) with bounded support, that is,

f_bb | 7,(x) —Ax)| dx =0, a.s., as n— o,

The following lemma is needed to prove Theorem 3.1.

Lemma 3.1 (Taylor and Zhang (1990))

(@) If {Y,} are independent random variables with sup, E Y,? < o, then

n 0P sup lile(t,e)
=
HES

+e ¥ +e
itY;

where Di(t,e) = e"VIlIY;l< j 2 1—Ee"™I[Y, i< j % 1, 0(,8(%,5)0.

—0 a.s.

(b) If {Y,} are independent random variables with sup, E Y, ¢ oo, then
Jo e dldt =0 as.
implies
[ e 1™ —Ee™ ~Dit,e))ldt —0 as
F, =1

where g, is an integrable function and F, is a subset of R .

Now the L, strong consistency of 7,(x) to Ax) will be shown in the following

theorem.
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Theorem 3.1 Let X and Z be independent random variables and E Y2 0, Y=X+2Z.
Assume that () 7(x) has bounded support, supp f C [—b,b], (i) 2™ —> o0 as zn — o,
and (iii) g(&) does not vanish for all real £ R. Then,

f_bb | 7, () —Ax)| de —0, as., as n—o00 if G272 7/3) =o(n?)

for some 0<B<1/2 where G(-) is defined as G(x) = R
|Z€;|1é xq(E)l

proof.
First, observe that from (2.5), (2.6), the Fourier inversion formula and Parseval’s identity,

Fu () — f(x) = é Qo s P k(X)) — F(%)

= Z(F 22U )o@ — Zamena® — F, 3 bua s

7=1
PE(27 Y~ k)

—_ 2—m/2— “ E’(E) e m/2 m
- ;Z ;Zl 2mn f a(—27&) dé x 2 p(2"x — k)

— 00

_22271'[_00 dé X 2 e(27x — k)

q(—¢&)
- ?é:'z 2,” bii e

. 2798 (T~ (- 2m8)

_ m. 1 i=1 —ikE
o ;Zgo( 27x— k) 2rn f—oo a(—27 &) < e d¢
- EZ gm brwdir(x). (3.1

For the second part of (3.1) we have , by Theorem 8.4 of Wojtaszczyk(1997),

f_bbl EZ 2:”1 birdrp(x)| dx — 0, as m — ©,

Next, for the first part of (3.1)
P& e ™™ 3 (M = H-2"9)

’ m 2" (™ &
f_J;Z{D(Z x— k) 27n f—oo G(—278) dé | dx
~ 2"V, <~ om
g e WO BT g=278)) b )
27n f_oo | 2(—278 | d& % f_b ;ZIqD(Z x— R | dc. (32)

For the first part of (3.2), notice that |supp (¢ (&€ )| < % 7. Then
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o f%n _#9 (™= H—2"9 - D276+ D(2"E,0) .
a(—2"8

2ran J_4
3

dte v dte

—Ee"UINY <) 2 D)

( where D;(&,¢) = eiéyi1[|Y,~|$]' “ 1]

v A IRV H—2"9—D2" & €)) |
< 2 f =1 — p- dé
27n 4, lg(—2" &)1
w A 12 D" e |
y 2 [ = dé
2 J_y, " 12(—2"9)]
2;+2”
B _l_ ]_ z'éY,-_ iEY;_ )
= o e o BT BT Ds e
o AT IEDE7E )|
+ o f_%” T (3.3)
Since, by assumption, G(2"%7/3) = o(#n?) for some 0<B{1/2,
2:1;1+27r
1 8 -1
— L e < Xt
sz ala(— o % = olnxm

Thus, the first part in (3.3) goes to 0 a.s. by applying Lemma 3.1(b). For the second part

of (3.3), similarly as the first part,
e | B DiEe) |

1 3
.~ d
S e Tt
1 1 27 /3 1 ’ ’
< = - = — D; ) 34
r W in [ la(d]  a0P  SF /21 (6.0 Gy
|5|523 /4 HES
2m? r <n®. Thus (3.4) goes to 0 a.s. by applying Lemma 3.1(a) and

Notice that |&]< 3
G(2™" 2 7/3) = o(n*) for some 0<B<1/2.

For the second part of (3.2), since ;Z lp(2"x— k) | = 1,

f_bb 2 l92"x—h) | e = 2b ( o,

Therefore, (3.2) goes to 0 a.s. and hence Theorem 3.1 is proved.
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Remark. When ¢(£&) has polynomial descent or exponential descent. the assumption in
the theorem, G(2""%7x/3) = o(#?), can also play the role of the condition, 2" —o as

n— ., When Z]( &) has polynomial descent or exponential descent, we can assume that
q(&) -satisfies the following inequality,

1O =A1+ &) " e 7B A0, B20, 7=0, 1)0.

For the polynomial descent, |g(&]=A(1+&) " and hence the assumption in the
theorem G(2™27/3) = o(n?)  implies 2" = o(n?*?) where m is the wavelet
resolution and n is the sample size. Thus we can take 2™ = O(#n’) for some
0<8<H/(1+7y), so that2™— o as #n— o, For the exponential descent,

2" = O((logn) ") and hence 2™ — 0 as #n — oo,

We conclude this section with two examples of Theorem 3.1. One is the case when g has

polynomial descent and the other is the case when g has exponential descent.

Example 1. Letg(x) = 05ae ™ the probability density function(p.df) of a  double
exponential distribution. Then ¢(&) = (&€ +1) ~! and hence ¢ has polynomial descent.

Suppose that supp f C[— b, b] . Then Theorem 3.1 vyields

f_bb | 7, (0) — fF® 1dx— 0 a.s. it 27 = o(n®*) for some 0< B<1/2.

Example 2. Let g(x) = (V27) ‘e "*/? be the standard normal p.df. Then g(&) = e *5¢
and hence ¢ has exponential descent. Suppose that supp f C[— b, b] . Then Theorem 3.1

yields f_bb | 7,(0) — f(x) |dx— 0 a.s. if 2" = O logn).

4. Concluding Remarks

In the wavelet framework 2~ 7 plays the role of usual window %, and hence the wavelet

scale m i1s very important. As the above examples indicate, the choice of the wavelet scale m
depends only on the known noise distribution, that is, in the case of polynomial descent

27 =o(n®1*7Y) and in the case of exponential descent 2” = O((log#)"). Thus the

smoothness of f does not affect the wavelet resolution m in obtaining.the L; strong

consistency of f, to f when f(x) has bounded support.
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