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On a Skew-t Distribution
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Abstract

In this paper we propose a family of skew- ¢ distributions. The family is derived
by a scale mixtures of skew-normal distributions introduced by Azzalini (1985) and
Henze (1986). The salient features of the family are mathematical tractability and
strict inclusion of the normal law. Further it includes a shape parameter, to some
extent, controls the index of skewness. Necessary theory involved in deriving the
family of distributions is provided and main properties of the family are also studied.
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1. Introduction

Azzalini (1985) and Henze (1986) worked on the so called skew-normal distribution, a family
of distributions including the standard normal, but with an extra parameter to regulate
skewness. A random variable Z is said to be skew-normal with parameter 6, written
Z~ SN(0), if its density function is

$(2;0) = 2¢6(2)0(0z), —o© { z{ o, 1)

where ¢(z) and @(z) denote the N(0,1) density and distribution function, respectively; the
parameter 6 which regulates the skewness varies in (—o0, o), and 6= (0 corresponds to
the N(0,1) density. We refer Arnold et al. (1993), Azzalini and Valle (1996) and Chen, Dey
and Shao (1999), Kim (2001) for the applications of the distribution.

The purpose of the present paper is to introduce yet another family of distributions that
includes the skew-normal as a special case. We consider using a scale mixtures of
skew-normal densities to coming at a family of skew- ¢ distributions. So that this gives rich
family of parametric density functions that allow a continuous variation from normality to
non-normality. Such an extension is potentially relevant for practical applications, since in data
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analysis there are a few parametric distributions available to dealing with both symmetric and
skewed data, especially for the problem of fitting heavy-tailed and skewed data. Necessary
theory involved in deriving the family of distribution is provided.

2. The Family of Distributions

This section proposes a family of skew- ¢ distributions by use of a scale mixtures of the

skew-normal distributions in (1).

Lemma 1. Let f( -|A) be a density function symmetric about 0, G( -|A) an absolutely
continuous distribution function such that G’ ( - |4) is symmetric about 0, and A is a random

variable with density function g(A). Then

2E;[G(Oy IDVAYID], —oe (y< o (2)

is a density function for any real 6.
Proof. Let Y| A and W]|A be independent random variables with density f and G,
respectively. Then

1/2 = E;[P(W—0Y < 0[] =EE y,[P(WL Oy|Y=y,4)]

= LEJLGWlﬂ)f(ylM(A)dydA= [T ELGovIn Ay I )]ay,

where A is the space of A.

Using Lemma 1, we can define the family of skew- ¢ densities.
Definition 1. A random variable Z is a skew- { random variable with parameter 8 and vy,

written Z~ St(8,v), if its probability density functior is
1(z;0,v) = 2E,[AYV2(1V22)@(21%02)]. —o0 < 2 ¢ oo, 3

where A~ Gamma (v/2, 2/v) with E A=1, and ¢ and @ are the standard normal density

and distribution function, respectively.

Notice that the family {%,,,0< @, v>0} defined by (3) denotes a family of scale mixtures
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of skew-normal densities, and hence leads to skewed and heavy-tailed distributions. The
family can be represented in terms of scale mixture of normal and truncated normal laws.

Theorem 1. Conditional on A~ Gamma (v/2, 2/v), let U~N(Q,A"H and
V~N(@, A7 be independent normal variables, and let
g

Z = “——‘W|U|+

1+ 6 @

1
1+ )" V.
Then the unconditional distribution of Z is S#(4, v).

Proof. For a fixed A, the conditional density of Z|A is straightforward from the
convolution formula. So that it has the density

QA2 (A2 @(AY202), —oc0 (2 00, A 0.

Taking expectation with respect to A, we obtain the result.

Corollary 1. If Y|A and W]|A are independent N(0,A™}) variables for some
A~ Gamma (v/2, 2/v), and Z is set to the scale mixed random variable Y conditionally on
0Y > W . Then the scale mixed distribution of Z is S#(8, v).

Proof. Upon performing the transformations R [A= (14 6% Y2 (W|1—8Y |A) and
Sii= (146 2 (Y |A+6W|1), RIA and S|A are independent N (0, A~Y) random
variables, and QY |1 >WI|A is equivalent to R |1{0. Since Y [A=(1+6) -1z
(= 6R |A+ S |A) the conditional distribution of — R |A given that R |A<0 equals that of
[U | |A in (4), and hence the distribution of Y [ given that R [A<0 is equivalent to that of
Z |A in (4). Thus the mixed distribution of Z gives the result.

Corollary 1 implies that the random variable Z with density (2) can be generated by the

following acceptance-rejection technique. Sample A from Gamma(y/2, 2/v), and then

independently sample W and Y from N (0, A7Y). If W< Y, then put Z= Y,otherwise

restart sampling a new A and pair of variables Wand Y until the inequality is satisfied.

The next result follows immediately from Corollary 1 on setting X|A= (Y |A— W|A)/
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(1 + 62) 1/2.

Corollary 2. If (X|A,Y|A) is a bivariate normal variable with N(0,A™!) marginals and

correlation p for A ~ Gamma(v/2, 2/v), then the scale mixed distribution of Y given

X>0is St(8(p), v), where 6(p) = p/(1— 02
The following properties follow immediately for the Treorem 1.

Property 1. If Pr(A=1)=1, St (6, v) and St (), v) densities are the skew-normal
density by Azzalini(1985) and N(0,1) density, respectively.

Property 2. As 6 —oo, distribution of St (8, v) tends to the half- £,. On the other hand

St (0, v) is the same as ¢, distribution.

Property 3. If Z is a St (6, v) random variable, then —Z is a St (— 6, v) random

variable.

3. Moments

Since, conditional on A4, zZ: ~ 37! x2(1), for v) 2k+ 2, the even moments of Z are equal to

EZ%? = 1-3---(1+2k)(5”)k+11( ”52 —k)/f(%), for £=10,1,2,". 5)

For computing the odd moments, we make use of Ccrollary 4 of Henze (1986). This gives

EZW (%) 1/2<-2’i)k+1/21'( Vgl —k)/l(%) (1+6?2) FEaVp) (Zk;l)! = (Zj-lfll()zl(g()/:j—j)!

for k=0,1,2,-- and v>2k+1. 6)

Lemma 2 The moment generating function of Z is

-1/
M (t) = ZEA[exp{/l_l ﬁ/z}@((‘f—i&;)il%)]. %

Proof. From Definition 1, we see that the moment generating function Mz(t) is

2F,; f_o;exp {-;;}(24”) v exp{—AZ;Ztmz—} 0{022 "%} dz
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= 2F, f_oowexp{—zlz—}(i) v exp{—i;} O{0(u+ 2 "Y?D)au .

Using the well known result that, for U ~ N(0,1), E{@hU + £} = 0{k/(1 + ©*)?}
for any real % and % (see Zacks 1981, 99. 53-54), we have the result.

Hence, after some algebra, we obtain the mean and variance of Z~ St (0, v):

B2 = (%) (2 g).

%=ty - n(laf:ﬁz) {[( Vz_l)/[(_zz)}z’ V2.

and

The skewness of the distribution Z can be obtained by use of (4).

Theorem 2. Let 02|U| and o% be the variances of |U| and V, and let #BIUI be the

standardized third moment of |U|; that is, 3y = E{[IU| — E(U D1/ou}>.
Then, the standardized third moment #32 of Z with the pdf (3) is given by

2 3
'USZ — E( Z_(g(Z) )3 — 0(6 dSIUI#;g]| + K(V)) . w3, (8)

where ¢ = Var((1 + %) Y?2) = (1 + 6%) o,

Proof. Let Z* = (1 + 6% Y2Z, then the standardized third moment ©5 is equivalent to that
Z% ie p>= uSZ._ From Theorem 1, we see that E[Z* — E(Z*)]* = ELE[(8|U]| —
GE(UD + V)'121} = @ EL(IUI— EAUD)®] + 36E:E{L(IU| — EIUNV?|A} =
8’ Gl iy + 0K(v). Thus py = u = (i + 0K (v))/ 6%, where

1/2
) (EA—3/2__E/1—1E/1—1/2)

) ) R ) (-55)

K(u)=3(

N n o

— 5
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and o = (1 + 6%)d%

Note that /13|U; 5> 0 (i e. the distribution of |U| is skewed to the right as defined in (4)),

and K(v) > 0. Consequently the skewness of the distrioution of Z is characterized by 6. (8
implies that the distribution of Z, St(8,v), is skewed to the right (the left) when 8> 0
(<0 ) and symmetric for 6= 0. Figure 1 and Figure 2 show the shape of the distribution

for various values of 4 and v.

#=2 and v=20
~6=2 and v=5

=0 and v=2 /
8= and v=5-"5

Figure 1.
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Shape of the Probability Density Function of Z ~ St (8, v).
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Figure 2. Shape of the Distribution Function of Z ~ St (8, v).
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4. Concluding Remark

This paper has proposed a family of skew — ¢ distributions, denoted by St (8, v), the
parameter ¢ which regulates the skewness. The special feature of the family is that it gives
rich family of parametric density functions that allow a continuous variation from normality to
non-normality. Therefore the family of skew — ¢ distributions is potentially relevant for
practical applications, especially for the analysis of skewed data. Immediate applications of the
distribution can be illustrated as follows: (i) Binary regression with an asymmetric link
function; (ii) Regression analysis with asymmetric errors; (iii) Regression analysis with
truncated errors in independent variables.

A study pertaining to the applications is an interesting research topic and it is left as a
future study of interest.
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