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An edge detection method for gray scale images based on

their fuzzy system representation
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Abstract

Based on a fuzzy system representation of gray scale images, we derive an edge detection algorithm whose
convolution kernel is different from the known kernels such as those of Roberts’, Prewitt's or Sobel’s gradient. Our
fuzzy system representation is an exact representation of the bicubic spline function which represents the gray scale
image approximately. Hence the fuzzy system is a continuous function and it provides a natural way to define the
gradient and the Laplacian operator. We show that the gradient at grid points can be cvaluated by taking the
convolution of the image with a 3X3 kernel. We also show that our gradient coupled with the approximate value of
the continuous function gencrates an cdge detection method which creates edge images clearer than those by other
methods. A few examples of applying our methods are included.
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1. Introduction a 3X3 kernel different from any of the above based on a
cubic spline function which represents the gray scale
Edge detection is a technique used in image image approximately. Note that, instead of using the

exact cubic spline mnterpolation function for the gray
scale 1mage, we use an approximate’ representation

pre-processing for image enhancement or for pattern
recognition by reducing an image to show only its edge

details. FEdge enhancement is implemented through spatial
filters such as shift and difference, Prewitt gradient, and
Laplacian edge filters. In addition to the above, many
other filters have been developed including Sobel, Kirsch,
and Robinsen filters[1,2,4]. These filters are mostly of
size 3X3 and they are applied to a gray scale image by
taking the convolution of the image with a selected
kernel. In gray scale images of real pictures, however,
there are many factors that degrade the edges including
the photon noise, blurring or defocusing, and irregularities
of the surface structure of the objects[1]. These noises
can also be removed by applying a convolution with
properly chosen 3% 3 kernels[6]. In this paper, we derive
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whose values at grid points or at pixels may differ from
the original. This will not only allow us to define the
cubic sphine function without the lengthy computations
necessary to obtain the cubic spline interpolation function
but also to remove some of the noises described above.

We will show in the following that for the approximate
representation, we use the original gray scale image as
the rule table for a fuzzy system so that no computation is
necessary at all to set up the fuzzy system. It is shown[7]
that the fuzzy system is an exact representation of the
cubic spline function representing the gray scale image
and it enables us to evaluate the complicated spline
function in a very efficient manner.

First, we show how a cubic spline function can be
defined to represent a gray scale image. Let {f;]:,7j=



1,2,--Nibe a gray scale image, ie. f,;={0,1,2,---255}
assuming 256 gray levels are used, and let BJ{x) be the
cubic B-spline defined on
defined so that

[x; 5,x,+9]where x;’s are
x=hfor all j=0,1,2,N+1.

Xiet ™

L

Thus, B{x) is defined as o

(x“x172>3

P43 (x—x o) +3r(x—x, ) = 3(x—x,,)*
B30 o — 0+ 30(x ey — 02 =3(x,, — 0)° (D
(x;09—2)°

Note that we may assume that f,,= Ax; y;) for some
continuous function Ax,y) where y,’s are also assumed

to be equally spaced points. The following theorem
justifies that we may use cubic spline function

S(x, y) = ﬁ 1fh,-Bz-(x)B,'(y) can be used as an approximate
INEE

representation of a gray scale image (f;1,j=1,2,"-N}.

Theorem 1 [8). If Ax,y) is a three times continuous]y
differentiable function and if S(x,y) = iﬁq fiBLOB(»)
where f;;=fx,y;) with B{x), B,y defined on the
intervals [x,_»,%,+2] and [¥;.4,¥;+2] respectively, then

we have S(x,y)—Ax,»=0Fk) for all
[xg, x ne1] X (30, ¥ w1l

(x,v) e

Proof. We refer to [8] for a complete proof and the
following is a sketch of the proof. Assume x&[x;,x 441)

yely, vy for kE and [ We
S(x, v) — Ax,y) as a sum of five terms; S(x, v) — S(xy, ¥),
SCep W) — SCxs, v, SCxp ) = Axiy ¥, Rxi ¥ — A2 ),
and Ax, y—Ax.y). When the first and the fifth are
added, we obtain (x—x0) % (S, (xs, ) — folxy, ) + O
which is O(%%). Similarly, the second and the fourth are
added to obtain the sum of O(4%). Since the third is of
O(K%), the sum of the five terms will add to O(k).
QED.

and some write

Consider the case where f, ;=0 for all (4,7 +(2,2) and
Fo =256, then S(x, ) =256B,(x)B(¥) and Slxg, y;)=
256 Bo(x9) By(y») =256 % % Therefore, we have the maximum

difference between S(x,y) and f,; is as large as 256« %

Note that
S(xk,y1)=§lg(fk—l,/~]+fk71,l+fk— NiSha
Af o Y6 o P A et Fov o T A e F e )

and hence the process of computing S(x, v, from the

image f,; is equivalent to taking the convolution with
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3%x3 kernel
L[ 1‘
L1416 4
B4 1)

which may be considered as a smoothing operator.

In case the image is a digitized image, ie. f,;{0,1)
for all (4,7, then we have the following.

Theorem 2. Let {f;}i,i=—1,0,1,---N+1} be a digitized

image, ie. f;;{0,1} for all 4 and let S{x,y)=

1
& ]f . Bi{x)B(y) be the continuous cubic spline repre-
L=

sentation of the image. If we define g,,= [S(xs
y)+0.5], then g,,=f,, for all & I{=-1,0,1,N+1

Proof. For a complete proof, we refer to [8). A sketch of
the proof is as follows. From the inequality relation
05
9

and so we have [fk_ﬁ'%i]ﬁ [SCxy, v+

~4 <S(xey ¥ = fo, zé‘é—, we have f,,+ <S(x, y) +

9
05ka‘1+89+5

051 <0f5+ 821 Note that £+ 02 1= 170+ 552

= f,, and hence we have the conclusion. Q.E.D.

Next, we consider a fuzzy system representation of
the gray scale images. To represent a function
z=fAx,y) of two independent variables, we need to
define fuzzy sets for the fuzzification of input variables
x and vy, fuzzy combination rules to define the relations
between the dependent variable z and the two independent
variables x,vy, and the output fuzzy sets to defuzzify the
output fuzzy sets to obtain crisp values for the variable z.
In the following, we will consider a gray scale image
{fi)i,i=1,2,---N} as a discrete function of two variables.

The input fuzzy set for the value at pixel (£, 0 is
defined by Byx)xBf{y) where Byx)
B-spline defined on [£—2, #+2] with 2=1 in (1) and
B{y). Note that we have B,(x)xBfy)
= Blx— k)X B(y— {) which we write as S, {x, ). For the
fuzzy combination rules, we simply take the image {f;;}
the numbers f;;
appearing in the rule table and form triangular sets to form
output  fuzzy sets. Recall  that we  assume
fi,£40,1,2,---,255} and hence that there are at most 256

output fuzzy sets. The following theorem proves that the
fuzzy system formed by the above method is an exact
of the S(x, v) =

[+ 1
% 1f . Bix)B,;(y). For a proof of the theorem, we refer
L=

is the cubic

similarly for

as the rule table. Next, we sort the

representation cubic spline function

to our earlier proof in [7].
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2. Gradient and Laplacian Operators by
Cubic Spline Function Representation

In this section, we consider how the gradient vector

and the Laplacian of the bicubic spline function S(x, )=
!

% | FiBx)B;(y) can be evaluated, where {f,[i,j=
L=

1,2,+,N} is a gray scale image. Recall that B;(#

defined in (1) is a piecewise cubic ploynomial which is twice
continuously differentiable and hence the gradient vector

VS, = (95 28y and  the Laplacian v 2S(x, y) =
dx’ 0y
2 2
242965‘ + (Z 25 not only exist but also they are continuous.
0 a

First, we consider one term of S(x,w), ie. S, (x,»)=
B(x) xBf{y). When the gradient and the Laplacian of
S Ax,y) are comuted and evaluated at the grid points,

we obtain the values shown in Table 1 and Table 2. It is
routine to check that the vallues at all other grid points
are zeros.

Table 1. The Values of 12xvS, (4,7)

i=1-1 j=I =1+
ik 1 (LD | (40 | (7D
i=k (0,4 | (0,0 | 04
ik 1 LD | 40 | LD

Table 2. The Values of w28, (7,7

j=1-1 =1 j71+1
i=k 1 1 1 1
i=k 1 3 1
1=k+1 1 1 1

Now, we consider the first components of v S(7, 7). It

95 ()=

oxX

can be computed by

~fiviam A e fiaga b fa e A e e
(2)
where the coefficients come from the first components

of the vectors in Table 1. Note that the coefficients for
corresponding to k=17 are all zeros and they do not

appear in  (2). Similarly the second component of
v S(7,7) can be evaluated by "f:ﬁ;(i, =
—Ficgat fem A o e S
(3)
and the Laplacian v3S(4,)) is
St fion b fimi it f- o
8f[,j+f1_j+l+fl' 1,7~ 1+f1'0 l,/+fz'¢ 1.j+1 (4)

By using the convolution formula, the above relations
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(2), (3), and (4) can conveniently be written as ——gf =

S*p and 6_38)‘ =S*g where p and ¢ are the matrices

d

formed by the first and second entries in Table 1
respectively. Similarly, the Laplacian can also be written as
v2S= Sx} where % is the 3x3 matrix in Table 2. Our
gradient operator compares with other known gradient
operators such as Prewitt, Sobel or Isotropic operators as
shown in Table 3a, 3b, 4a and 4b. Note that our gradient
operator shown in Table 5a and Table 5b come from
relations (2) and (3).

Table 3a. Prewitt-horizontal Table 3b. Vertical

—-101 -1 -1 -1
[—101 0 0 0]
-101 1 1 1

Table 4a. Sobel-horizontal Table 4b. Vertical

-101 —1 —2 —1
‘—202 l() 0 0
-101 1 2 1

Table Ha. Ours—horizontal Table bh. Vertical

-101 -1 -4 -1
l*404 0 0 0}
—-101 1 4 1

3. An Edge Detection Method Based on
Cubic Spline Function

Edge detection is a useful method for detecting object
boundaries. For a continuous image z=Ax,y), the
magnitude of its gradient will be small at a point where
there is no sharp change of the values from any of its
neighbor points and will be larger wherever there is a
big jump from any of its neighbor points. Therefore, the
magnitude of the gradient should be large at points of
the object boundaries. By using our fuzzy system
representation, we computed the convolution of the
image with the 3X3 kernel shown in Table 5a and 5b,
and compared the result with the one by Sobel's
gradient.

When the magnitude of the Sobel’s gradient is computed
and cut it off to zero when the magnitude is below 75, we
obtain the pictures fig.la and fig.2a. If our method is
applied on the same figures with the magnitude of the
gradient multiplied by 128/(1+ S(x, y)) where S(x,y) is
the cubic spline representation of the image, and cut it off
to zero when the result is less than 128, then we obtain the
results shown in fig.1b and fig.2b. One can see from these
figures that our method creates an image of edge
boundaries which looks cleaner than the one by Sobel's
gradient. We did try to create an image by using the
magnitude of the Sobel’s gradient divided by
1+Image(ij), followed by a multiplication with various
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factors, we found that they are no better than the original
Sobel’s gradient.

4. Conclusion

We showed that a gray scale image can be represented
by a fuzzy system without doing any computation on the
image data at all. This representation computes an
approximate values at grid points rather than the exact
values of the image data. A 3X3 gradient kernel is
derived from this representation which is different from
other known kernels. Using the magnitude of the gradient
obtained from this representation divided by 1 plus the
value of the function, we obtain an excellent image for the
edge boundaries. We still have to prove numerically,
however, that our method produces a better image for
the edge boundaries.
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