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Stochastic Stabilization of TS Fuzzy System
with Markovian Input Delay
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Abstract

This paper discusses a stochastic stabilization of Takagi-Sugeno (TS) fuzzy system with Markovian input delay. The
finite Markovian process is adopted to model the input delay of the overall control system. It is assumed that the zero
and hold devices are used for control input. The continuous-time TS fuzzy system with the Markovian input delay is
discretized for easy handling delay, accordingly, the discretized TS fuzzy system is represented by a discrete-time TS
fuzzy system with jumping parameters. The stochastic stabilizibility of the jump TS fuzzy system is derived and
formulated in terms of linear matrix inequalities (LMIs).
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1. Introduction

Recently, as the communication system has been more
reliable, some attempts have been tried to remotely
control via communication networks such as the Internet.
Since the control loops of the remote-control system are
closed over communication networks or field buses, the
time delay phenomena inevitably occur. The stability and
performance of the controlled system are definitely
dependent on the transmission performance of the communi-
cation networks. It is well known that the existence of
the time delay makes the closed-loop stabilization more
difficult[3). Some control methodologies that deal with
the input-delay have been developed, using two rigorous
mathematical tools such as Lyapunov-Krasovskii stability
theorem and Lyapunov-Razumikhin stability theorem.
Very recently, the stochastic approach to handling
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time-varying delay in random manner has gathered
attentions of research. This is very desirable for
designing a stahilizing controller for the remote-control
system via the Internet, since the delay in the Internet
randomly varies.

Motivated by the above observations, this paper aims
at studying the control problem for a class of
Takagi-Sugeno (TS) fuzzy systems in the presence of
randomly time-varying input delay. Although recent
researches have been devoted to the TS fuzzy-
model-based control[4-11], this issue has not been
directly tackled, thus must also be carefully handled in
TS fuzzy systems for safety and improved operational
performance of the nonlinear remote-control systems.

The stochastic property of input delays are modelled
using the Markov chain with the finite states, which is
quite reasonable. The continuous-time TS fuzzy system
is discretized for designing the digital control law. The
discretized TS fuzzy system is represented as a
discrete-time TS fuzzy systermn with jumping parameters.
The sufficient condition for the stochastic stability of the
jump TS fuzzy system is derived and formulated in
terms of coupled linear matrix inequalities (LMIs).

The organization of this paper is as follows: Section 2

459



X 2 X|sAAaHEs =X 2001, Vol 11, No. 6
reviews the TS fuzzy system and its basic properties.
The main results of this paper are discussed and
explained in Section 3. To the end, Section 5 concludes
this paper with some remarks.

2. Input-Delayed TS Fuzzy Systems

Consider the sampled-data TS fuzzy system described
by the following fuzzy rules:
Plant Rule i
IFz (D is I'l ~z,(Dis I'}
THEN x{8)=A;x () + B; u (4§ (1

i G=1,+,ni=1,,9
(e R" is the state, w(H=wlkT) is the piecewise—
constant control input vector to be determined in the
time interval [T, kT+ T), T>0 is a sampling period,
and r, represents the time-lag, which is governed by an

where is the fuzzy set,

underlying Markov chain. The defuzzified output of this
TS fuzzy system (1) is represented as follows:

H)= D) (A D+ B u(t=1)) (@)

Assumption 1 : Assume the the delay time r, of the

control input is not larger than the sampling time T for
k=1,2,.....

Throughout this paper, we employ a sampled-data TS
fuzzy-model-based controller as follows:

(D)= ;“\ei(x(m)uc,-x(mu,.u<¢~ ™) 3)

on any internal Vite[kT kT+ 1), k=1,2,.....
Assumption 2 : Assume that the firing strength of the
ith rule, 6 (2(#)) is approximated by their values at time
kT, e, 0{x(D)=0{x(kT)), for kT<KkT+T. Con-

sequently, the nonlinear matrices gﬁ(x( MA,; and
2:6(95( H)B,; can be approximated as constant matrices

ﬁlﬁ(x(kT))Al and gﬁ(x(kT))B . respectively, over

=

any interval [£T, kT+ T).

Theorem 1 @ The dynamical nonlinear behavior of the
digital TS fuzzy system (2) can be efficiently appro-
ximated by

Xpe1 = gﬁ(xk)(G,'xk‘F H,‘l(fk)u k+ [],L)(Z'k)u k,,[) (4)

“T—ry
where G ;= exp(A,T) and Hﬂ(rk)=j0 eMdB,,

e™dAB,, x, and u, are the abbreviations

]

Hoep= [
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of x(kT) and u(kT), respectively.

Proof : The proof is omitted due to simplicity.

Introducing the augmented state x,= [x/7 ui )] ’
yields the closed-loop system as
Xht1 = zl Z}ai(xk)gj(xk) Gy (tox, (5)

where

/C;;‘(Tk):[GﬁH]gf”)Kf HQ(er)L,]
where the time delay 7, is not specifically determined
since it varies with random fashion. To model the time
delay phenomena, one possible and suitable way is to let
the distribution of the delays be governed by the state of
an underlying Markov chain taking values in a finite set
L=1{1,2,...,s with transition probabilities

Priren=mey=0=0um 6)

where p,,=0. When the system operates in the lth
(Z-k: l),

Y= 2] ,21 Glxs where Gh= Gy(z,=1, and (5) is
called the jump TS fuzzy system.

mode the activated TS fuzzy system is

3. Main Result

Definition 1[1,2] : The jump TS fuzzy system is said to
be stochastically stable if for all initial mode roe T,
there exists a finite number M (zy)>0 such that

Newo
}\}EOE{ > x4 (T)x (1) TU}< M(ry)

Remark 1 : Definition 1 implies the asymptotic conver-
gence to the origin, in the mean-square sense. In other
words, as is obvious from, stochastically stability
dictates

lim E{x "(zo)x Lz ,)biglzo} =0
Theorem 2 : The jump TS fuzzy system is stochastically

stabilizable if there exist P >0,/=1,2...,s, satisfying
the following matrix inegualities

2,=[‘/ff A*P 04,j=1,2,....q. ®)
i A

where P,= le) mP m and star denotes the transposed
element.

Proof : Construct the stochastic Lyapunov functional as
Vk(T/a)=XkTP1Xk 9

where P,= P, _, Then further computation yields



EVi(rple,=0 -V (= 0
= MZID(TI?JH:mlD(XIZ—+[PrrLXk+I)—XZPIZk

= ’;lplmXZ*lexk+1Ax1P1xk

(o)
., T SR
=ZZ(( ,i:\ E G;‘/) ?1( gx 2 Gi/)"P[)xk
gx,’{ /Z[X’U
<0
Thus we have
EVi(ruDlry— Vilzy
- Vk(z'k)
_xils Zoxw
Tr (11)
3 /1 min(' Z\)
< —min . I{m}
=ag—1
where
a=1—min . L{%ﬁ'}“

On the other hand, from (11), we obviously have

EV itz

az Vk(rk)

>0

Hence, one has

E Vk+1(Tk+l)|Tk}—§a’Vk(Tk) (12)

Taking iterative expectation on both sides of (12), we
have

E{V (t))<sa* Wty (13)
Further computation gives
E{ﬁV(r)z cda’y oy (14)
~ W\ To T—a YO\T0
Thus,
. ; Vu( Z'[J)
tim [ 2, Ve o o) (15)
Using Rayleigh quotient, one gets
N,y N .
I\EI}XE{ 2 xixe z’o}< M(zg) (16)

where,
L4V
e =Crmin . 3 ma(P ) '-S0

Since M is bounded and lx,)<|x,, (16) implies the
stochastically stable.
Corollary 1 : If there exist positive definite matrices
P, Py, and matrices M, L; satisfying the following
coupled LMlIs

RE Y XA e TS WA AlARel &E8X oimsl
—PH‘ * *
0 ~Pp' *
GP +HIM HIN! —pi'P
M! N 0
GP vHLIM! HIND 0
M| N! 0
* * *
* * *
* *
—pa' Py * * <0
0 e i PT
0 . 0 —pa'Py
where i,7=1,2,....,q,1=1,2,...,s, then the jump TS

fuzzy system is asymptotically stabilizable.

Proof : Choose the positive definite matrices P, in (8)
as diag{P g, Py}, where P >0, Pp>0. From Theorem 2
and by basic calculation, it is rasy 1o obtain (17) from (8).

Remark 2 : In implementing the control system, every
message sent out by the plant and controller is
time-stampedl[3). To calculate the delay accurately, plant
and controller clocks must be synchronized.

4. An Example

In this section, a simulation example is presented for
the visualization of the proposed method. In specific, the
stochastic  stabilization of the experimental helicopter
with 2 degree of freedom is simulated.

Consider the following nonlinear dynamic equations [12]

Fig. 1. Helicopter system with 2 degree of freedom.

T D+ B, D)= R ,F A Vy— M .glhsin(p())
+ R cos(p(N+ G L, (Vi (D)

I, ¥H+B, WO=R.F (Vynys G L, (Vin))

(17}

which describe the dynamic behavior for a 2-dimen-
sional helicopter system. The details of the related
parameters can be found in [12]. The experimental
system is shown in Fig. 1. Let the state vectors and
input vectors for subsystems be

*D=Lo) WO b WD [p(d [y(]17
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w(D=[V, () V,(H]7, then the state-space represen-
tation of (17) can be written as

()
* x;(t)
x4(t)
B, (M g(hsin{x () + R .cos{x (#)
= __]’;x:s(t)“ 7,
‘Bp/]px/i(t)
10x (D
10X2(t)
0 0
0 0
_ RKyg K&
* Js I |u(® (18)
_RKe  Kug
]y ]y
0 0
0 0

Using the procedure in [13], the analytic TS fuzzy
system of (18) is obtained as follows:

Ri : IF x,(#) is about I,

R IF x(#) is about I',,

THEN

where

0 0 1 0 00
0 0 (}9 1 00
R =2
A —|GD:0 7 0 '
B,
0 0 0 7o 00
1 0 0 0 00
0 1 0 0N 00
0 0 0
0 0 0
_REye  Kpg __M.gaB
B\=By= I J, | d1= 7,
RK e _ K,g 0
Iy I, 0
0 0 0
0 0
0
0
_ M.t
d)— ]/:
0
0
0

where (3,1) =M .gaB/],, (3,1) 2= M .gbB/J,, and the
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membership functions for Subsystem 1 are
asin(x 1 () + B — Hx (H+ B
(a—b)(x, (DB

a(x“(t)+B)—afsin(x”(t)+ﬂ)
(a— b)(xll(t)+5)

F](x1(t))=

Iy(xy ()=

Assume that the sampling time 7T=10.05 second, and
the input delay is governed by two state Markov chain,
that is 7,{0.02 0.03} and the associated Markovian

probability transition matrix is assumed to be

[0.7 0.3
0.55 0.45]"

Based on Assumption 1,2, Theoreml,2, and Corollary
1, we obtain the following control gain matrices:

K :[A0.4712 1.3039 —1.1414 0.8899

! 1.0869 —4.8384 —0.1152 —3.4139
—0.2834 0.1138]
—0.0709 ~0.4504

Fig. 3. Simulation results of helicopter system with 2
degree of freedom and input delay

K} :[40.8850 1.3312 —1.1551 0.9099

- 1.0356 —4.8322 —0.1176 —3.4096
—0.2859 0.1166
—0.0717 —0.4498

K :[*0.4721 1.4925 —0.9569 1.0297

0.9862 —4.2845 —0.0154 —3.0330
—0.2347 0.1334 ]
—0.0406 —0.4008

K§=[~0.7352 1.4659 —0.9156 1.0155
2 0.9675 —4.2946 —0.0216 —3.04017
—0.2239 0‘1317]
—~0.0426 —0.401
LT 0.276 —0.0111 ;1_[0.296 —0.004
L [~0.024 0.262]‘LZ [0.002 0.273
s 0.424 —0.051] ;2_[ 0.268 —0.077
L [~o.080 0.332]‘LZ [~0.056 0.346

The initial value of the state is x(0)=1[0];.,and the
simulation time is 20 seconds. The simulation result is
shown in Fig. 2. It indicates the pitch angle and the yaw



angle are well guided to the zero equilibrium points.

5. Conclusion

This paper has discussed the stabilization problem of
the continuous-time TS fuzzy system with randomly
time-varying input delay. The input delay was suitably
modelled via Markov process with finite states. The
continuous-time TS fuzzy system was discretized for
easy handling of the input delay, which results in the
discrete-time TS fuzzy systems with Markovian jump
parameters. It has been shown that the given problems
can be solved if a set of coupled LMIs has a solution.
The computer simulation of the helicopter system with 2
degree of freedom has been done for validating of the
effectiveness of the proposed method. The simulation
results implies the proposed method has strong potential
in control of TS fuzzy system with Markovian input
delay.
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