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Abstract

In this paper, a fuzzy hyperresolution principle called CFHR, Compensatory Fuzzy Hyperresolution, with positive
compensation facility is proposed. Usually hyperresolution has several terms of condition parts. These terms have to
be connected by the and connective. If the min/max operator to be used the and operation, there is some dependency
problem of the min/max operator. So, we propose a compensatory operator EGM and applied it to the CFHR. We
show the CFHR does more meaningful reasoning than existing method. We also prove the completeness of CFHR.
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1. Introduction

The resolution principle proposed by Robinson[l] is a
fundamental technique for mechanical reasoning or
question- answering system. The resolution principle is
an inference rule based on binary logic that deduces null
clause from some unsatisfiable clause set. But there is
imprecise facts — about forty vears old - or queries and
also will be happened unpredictable situation. For
example, let us suppose that there are following (rule 1)
and (fact 1).

(Rule 1) If the color of a tomato is red, then the
tomato 1$ ripen.

(Fact 1) Tomato A is red

(Result 1) The tomato A is ripen.

We can get the (result 1) "The tomato A is ripen” to
infer above (rule 1) and (fact 1). But we can not make
an inference using the binary resolution if we have
"tomato B is deep red” or "tomato C is a light red”. To
make an inference these facts, binary logic based system
have to keep additional rules as follows.

(Rule 2) If the color of a tomato is deep red, then the
tomato 1s ripen very well.

(Rule 3) If the color of a tomato is light red, then the
tomato 1s not ripen sufficiently.

The binary resolution based on string matching needs
every kinds of rules expecting for joining the inference.
But it is impossible to represent all of the rules for the
whole facts. It is possible to represent truth value [0, 1]
about some expression in fuzzy resolution. So "the tomato
is ripen very well (Rule2)” or "tomato is not ripen
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sufficiently (Rule 3)” are can be derived.

Many researchers have studied reasoning about fuzzy
logic[2, 3]. Leel4] discussed the resolution principle in
fuzzy logic. He introduced the "half-truth” concepts and
showed that if every clause In a set of clauses is
something more than a "half-truth” then we are guaran-
teed that all the logical consequences obtained by
repeatedly applying the resolution principle will have the
truth-value. Shen[5] introduced the concepts of fuzzy
contradictory, contradictory degree, fuzzy resolvent and
confidence of resolvent. He extended binary resolution to
the fuzzy resolution and proved its completeness.

Shen's work i1s very interesting. But he did not
consider dependency problem to calculate a contradictory
degree[6]. For example, consider one man P wants to
marry a girl Ql (x=060), and the man also like to
marry another girl Q2 ( ¢ =0.55). While the girl Q1 hopes
to marry P with truth value =060 and the Q2 hopes
to marry > with truth value ¢ =090. It can be expressed
as follows :

min(P(0.60), Q1(0.60) = 0.60.
min(P(0.55), Q2(0.90) = 0.55.

I

We can see the possibility for P to marry the QI is
0.60 and the possibility for P to marry the Q2 is 0.55.
Though the Q2 want to marry P eagerly (0.90) but the
resull turned out 055 less than P and Q1 (0.60). It
caused by dependency problem of min/max operator.

Hyperresolution usually has several terms of condition
parts[7]. These term have to be connected by the and
connective. If the min/max operator to be used the and
operation, there is some dependency problem of the
min/max operator of fuzzy set theory.

In this paper, we propose an inference rule called
Compensatory Fuzzv Hyperresolution (CFHR) which
has a compensation operator Extended (reneralized
Mean (EGM). Theoretical background and effectiveness



of the CFHR are shown. Finally the completeness of the
CFHR are proven.

2. Theoretical Background

2.1 Fuzzy resolution and hyperresolution

Fuzzy logic is defined as {[0, 11, A, v, 7L [0, 1]
means real number of truth value between O and 1.
(and), (or), (not) are defined as follows[5, 7, 8, 9, 11, 12].

P A Q = EGMAND(P, Q).
P v Q = EGMOR(P, Q.
TP =1 - P (where P, Q € [0, 1]).

Here, EGManp and EGMor means that compensatory and
and compensatory or, respectively. Each compensatory
operator includes nun and max operators.

Definition 1 Variable Pi (i=1,2, ..., n) or its negation 'Pi
is said to be literal, Pi and Pi are said to be
complements of each other. A clause C is disjunction of
literals.

Definition 2 Given interpretation I, the truth value of a
clause C is TiC) < [0, 11

Definition 3 For a set of S of clauses, the truth value
of S under a given interpretation I as Ti(S), where if S
= {Cy, Co ..., Cul, is EGMaxp of each truth value of Ci,
.., Ca

TiIS) = EGMaxp{Ti(Cy A Co A L
= (TWCy), ..., THC).

/\ CH))

Definition 4 Let a pair of complement literal P and P.
P A TP is said to be a contradiction.
Definition 5 Let contradictory degree of P A 7P be
cd(P) = EGMor(TuP), T 'P) - EGMann(Ti(P), Ty(
P

There is some kinds of resolutions[9] The hyperresolution
of them resembles a If-Then rule of expert systems or
reasoning systems. Fuzzy concepts applies to the hyperre
solution. The definition and concept of the hyperresolution
are proposed by Robinson{3]. In the hyperresolution, the
positive clauses Aj, A», ..., Am and negative or mixed
clause B generate a positive clause. Any intermediate
results are not generated.

Definition 6 The inference rule hyperresolution considers
simultaneously a clause BB that contains at least one
negative literal and a set of clauses Al each of which
contains only positive literals, and yields a clause C
containing only positive literals. The clause B is termed
the nucleus and the clauses A; the satellites for the
application of hyperresolution. The clause B is termed a
hyperresolvent.

PV T'Q vV RV S (It means that "if P and
Q the R or §")
Pv T DA
Q VvV W DA
TV WV Rv S :C
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In the above example, we can see that all the negative
literals of B must be clashed with the positive literals of
A; and Ao

22 EGM compensation operator

Let us consider Dykhoff(10]'s generalized mean
operator (GM) and show some problem for using it
compensation operator. Dykhoff's GM was defined as
follows.

Definiton 7 The GM has number of operands, A1, A, ..
L An (A € [0, 1D, is defined as follows[10].

1/
GMCAL, As, oo Ay wys )= (B w A

Here, p is compensation parameter which can have all
the range of real number (p € R). wii> is weighting
factor, 1t has to get more than 0. Sum of the all the
weighting factor is 1.

2 w=1

i=1

Dykhoff’ GM has several merit but it also has a
problem. When compensation and or compensation or
calculate the truth values, if any operand (A) is 0 and

Z:l w,;+ As less than 1, then the result value of
compensation 1s not between 0 and 1.

Theorem 1

A=O0and (B wi+ AN<L(D w, - AN,
1] o}

proof If Ai=0 and ( 2 w, - A/) < 1 then Dykhoff's

GM 1s more than 1. It is violated that all the truth value
is between 0 and 1 (A € [0, 1]).

To satisfy the property [0, 11" > [0, 1], we propose a
new compensatory mean operator, so called Extended

Generalized Mean operator (EGM).

Theorem 2 There are the number of operands Aj, Ao, ..
, Ay (A €10, 1) which each operand can have weighting
factor wi. The following EGM always is in [0, 1]

regardless of Ai or ( 21 w,+ A/
&
tip
EGM(A,..... Ajpawy. ... w)= (2w, A (17 ,0A)

proof If A = 0 and ( 3 w,+ A < 1 then EGM is
between 0 and 1 (A; = [0, 1]).

Here, p is compensation parameter which can have all
the range of real number. wi is more than 0 and sum of
all the wi i1s 1.

EGM has eight property of Dykhoff’GM and also
satisfies basic property of connectives (EGM < [0, 1]).
To adapt compensation parameter p, we get the and
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compensation operator EGMann and or compensation
operator EGMon.

EGMaxp © - o0 < p < 1.
EGMor 11 < p < + oo,

Property of EGM is as follows.
(1) If p = 1 then it is arithmetic mean
(2) If p — 0 then it is geometric mean.
(3) If p — -1 then it is harmonic mean.
(4) If p — ~oo then it is min.
(5) If p - +o© then it is max.
(6) If p > 1 then it can be used OR(including max) operator.
(7) If p <1 then it can be used AND(including min) operator.
(8) If —o0 < p < q < +0 then it is EGM(p) = EGM(A), Ay, ...
CAn s DWWy, e, W) < BGMUAL A, ., Aa s DWW,
W, .., W) = EGM(q).

3. Compensatory Fuzzy Hyperresolution

CFHR concepts and its execution are shown in this
section. We can see the negative dependency of min
operator to comparing CFHR with EGM and existing
fuzzy resolution with min operator. First of all, we define
CFHR.

Definition 8 The inference rule Compensatory Fuzzy
Hyperresolution considers simultaneously a clause B
that contains at least one negative literal and a set of
clauses Ai each of which contains only positive literals,
and yields a clause C containing only positive literals
with confidence of fuzzy resolvent & successfully. The
clause B is termed the nucleus and the clauses Ai the
satellites for the application of hyperresolution. The
clause B is termed a compensatory fuzzy hyperresolvent.

PV TQ V RV S > (It means that "if P
and Q the R or S")
P(truth value = 055 VvV T A
Q(truth value = 0.90) v W Ay
(Tv WV RV 5 eevanpcan, son 1 C

Example 1 Consider one man P wants to marry a girl
Q1 with #=0.60, and the girl Q1 also like to marry the
man P (¢« =06)case 1). While the man P want marry
another girl Q2 with ¢ =059 and the girl Q2 hope to
marry P with truth value £=0.99 (case 2). Make an
inference with CFHR and find which couple has more
possibility to marry. Apply min/max and EGM operator
to the calculation for contradictory degree.

Solution [ ] clause can be derived form satisfiable set
S = {marrv(P, Q1), marry(P, Q2), marrv(Ql, P), marry(Q2,
P), "marry(x, v) V Tmarry(x, y) V marriage(x, v),
marriage(P, Q1), marriage(P, Q2)}

(case 1 . min operator)
8 = min({0.60 - 0.40), (0.60 - 0.40))
= min(0.20, 0.20) = 0.20
(case 1 © EGManp operator, here p = 1)
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6 = EGMAND(0.60 - 0.40), (0.60 - 0.40))
= EGMANID{0.20, 0.20) = 0.20
= (05 X 0201 + 05 X 0.201)1 = 0.20
(case 2 . min operator)
d = min((0.59 - 041), (0.99 - 0.01)

H

min(0.18, 0.98) = 0.18
(case 2 : EGMAND operator, here p = 1.5)
8 = EGMAND((0.59 - 0.41), (0.99 - 0.01))
EGMAND(0.18, 0.98)
(05 x 01815 + 05 X 0981.5)1/15 = 0.65

n

The min operator vields case 1 (0.20) is more possible
to marry than case 2 (0.18). But EGManp operator yields
couple of case 2 (0.65) have higher possibility than case
1 (0.20). Considering the truth value of P, Q1 and Q2, we
can see the P and Q2 couple’s possibility is more high
than the couple P and Q1.

Example 2 Show a [ ] clause is deducing from S = {
A Vv 7B Vv C A, B, C} using the min/max operator
and EGM operator respectively. Assume, in case 1: T(A)
= 060, T(B) = 0.70, T(C) = 0.90. In case 2: T(A) = 0.60,
T@B) = 0.60, TC) = 0.60.

Solution [ ] clause can be derived form satisfiable set
S={7A Vv "BV ZC_ A B TChL

(case 1 : min operator)
8 = min((0.60 - 0.40), (0.70 - 0.30), (0.90 - 0.10))
= 0.20
(case 1 : EGManp operator, here p = 1.5)
8 = EGManp((0.60 ~ 0.40), (0.70-0.30), (0.90-0.10))
= EGMann(0.20, 0.40, 0.80)
= (033 % 020" + 033 % 040" + 033 080"
= 0.50
(case 2 ! min operator)
& = min((0.60 - 0.40), (0.60 - 0.40), (060 - 0.40))
= 0.20
(case 2 : EGManp operator, here p = 1)
6 = EGMAND((0.60 - 0.40), (0.60-0.40), (0.60 -0.40))
= 0.20

CFHR show that case 1 get higher possibility than
case 2. But min operator can not discriminate case 1 and
case 2 though varying truth value B and C.

4. Completeness of Compensatory Fuzzy
Hyperresolution

Binary logic or classical logic has a number of
inference rule such as binary resolution, hyperresolution,
demodulation, paramodulation, and subsumption
strategy(9]. A new inference rule have to be proven the
completeness.

The first resolution was published and proven by
Robinson in 1965(1]. He also proposed the hyperresolution
which is more powerful inference rule in the same
yearl7]. Seven years later in 1972, Leel4] introduced
fuzzy logic to the resolution principle. Ding(5, 8] proposed



and proved fuzzy resolution principle. The CFHR solved
the dependency problem of min/max operator to make
compensation for biased result of min or max value.
Completeness of CFHR is described in the following,
We have some assumption to simplify and proof procedures.

Lemma 4.1 Let () and C> be two clauses. Let R(Ci, C»)
denotes any resolvent of Ci and C. Let EGMMAX[TYCy),
TCH]=b and EGMunl TVC), TXC)] = 8 > 05 Then b
STR(C, CG)) =b (4 <b)

Proof :

Let Cy =P Vv Ly, Co=P V Ly, we can represent R(C, C
=L VvV La

T(C) = EGMmax[T(P), T(LD] = « (1)
T(C») = EGMumax[T(P), T(1.2)] = b (2)
From (1) and (2), we get T{(L)) < @ and T@») < h

Case (a) : We suppose T(L1) = «.
T(R(C;, €)= T, vV L)
= EGMyax[T(Ly), T(L,)] = EGMMAX[ 8, T(1.»)]
Thus, b = T(R(C), () < b

Case (b) : We assume Ty < 8.

From equation (1) and T(P) = 8, 8 > 05
Therefore T(7'P) =1 — (P) <05 < B.
And from equation (2), T(Ly) = b = S.

TMRIC, G = Ty VvV L)

= EGMuax[T(Ly), T(L2] = b.

Therefore, we get the results from both case B =
TR, ¢)) < b,

Lemma 4.2 Let S be a set of clauses Ci, Co, ..., Gn Let
EGMaxl TVC), TUCH, .., UG T = b and EGMyun{ TVC)),
TG, .., VG = B. Let (n denoted by any clause in the
set R'(S). Thus b < TUC)) < b (forall n = 0).

Proof :
Proof by Lemma 4.3 and definition 2.9 in pp 117 of [1].

Theorem 4.1 (Completeness of CFHR)

A set S o fuzzy clauses is unsatisfiable if and only if
there Is a compensation fuzzy hyper-deduction «f empty
clause [ ] with its confidence of fuzzv resolvent &+ 0
from S,

Proof :
(a) (
Assume that S is unsatisfiable. Then it is unsatisfiable

in binary logic by Lemma 4.1. Thus empty clause [ ]

must be deduced from Lemma 42 and S. 6 % 0 or T([ 15)

< 05 is meaningless, then § = 0.

(h) ( <)

Suppose there is a deduction of [ ] with 6 % 0. And
assume that S is satisfiable. Then we get T(S) = 05
and get T([ 1) <0.5. But this is impossible. Therefore we
can represent T(C") as 05 < T D. 1t is not accepted
because of 0.5 > T( . Thus S must be unsatisfiable.

)
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5. Conclusion

We proposed an intelligent fuzzy resolution for
rule-based systems or intelligent systems. Some existing
resolution principles with fuzzy concepts produce non-—
commonsense resolvents because they use the min/max
operation of fuzzy set theory to compute the confidence
of resolvents for executing resolution. But proposed
CFHR with positive compensation facility did more
meaningful reasoning than existing method. We showed
the effectiveness of CFHR and completeness.

We expect that fuzzy knowledge-based systems with
CFHR can be applied to several fields such as uncertain
knowledge-based environments, imprecise query processing
and intelligent information integration. Further research
should be concentrated on such topics as finding suitable
model for applying real world application and selection
strategies for proper clause.
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