에너지 흡수효율에 의한 구조물간 내진 성능 비교

Comparative Seismic Evaluation of Structures by Energy Absorption Efficiency

김 장 혼
Kim, Jang Hoon

국문요약
다양한 구조시스템간 반복시험에 대한 구조 시험을 비교하고자 에너지 개념을 활용하였다. 이를 방향에 따라 각 시험 결과를 분석하고자 에너지 흡수량을 측정하여 비교하였다. 이를 통해 반복시험결과를 비교하여 에너지향목을 확립하였다. 적용방법은 시험시기의 에너지 흡수량으로 분석하여 에너지향목의 대상으로 제시하였다. 본 연구는 시험결과의 비교에 따라 방향표시를 수행하여 그 적용범위를 확립하였다.

주요어 : 에너지 흡수효율, 내진 성능비교, 누적손상이론, 에너지 극선

ABSTRACT

The energy concept has been extended to compare the hysteretic performance between various structural systems. As a result, the energy absorption efficiency is defined as the cumulative energy absorption capacity of a structural system normalized by that of the elastic-perfectly plastic system as a benchmark for comparisons. For this, the construction of energy curves from the experimental results obtained by cyclic loading tests is required. Using the proposed procedure, structures differing from each other in geometry, material and construction can be relatively and objectively compared for seismic performance. Also the beauty of the method is in its irrelevance to the structural failure mode. The proposed procedure was validated by application to the experimental results of two different specimens.

Key words : energy absorption efficiency, comparative seismic evaluation, cumulative plastic drift, energy curves

1. 서 론

한국 내진 설계개념의 중심은 사람의 생명보호가 우선 이고, 다음으로 구조물의 최소화의 기능유지, 그리고 마지막으로 구조물 손상의 최소화라고 할 수 있다. 이러한 목적을 적절한 비용으로 달성하기 위하여 내진 설계기준은 구조물이 약한 지진에 대하여는 탄성으로 가동하도록 요구하고 있으며, 강한 지진에 대하여는 비탈시적으로 가동하려고 본질적 인 변경을 유지할 것을 요구하고 있다. 그러므로 지진의 영향 하에 있는 구조물이 이러한 요구조건에 부합하는지를 판단하기 위하여 적절한 내진 성능평가방법이 필요하다. 특히 내진 성능평가가 진후 구조물의 상태 예측, 보수 및 내진 보강, 앞으로 발생할 수 있는 미래의 지진에 대한 구조물의 잔여 수명예측 그리고 이에 대한 비용담보성평가(cost-benefit) 효과 등을 연계하여 고려하여야 할 상황에서는 보다 객관적 이고 구체적인 평가방법의 필요성이 제기된다.

새로이 설계된 건설건은 구조물이나 오래 전에 설계되어 건설된 기존 구조물의 내진 성능평가방법에는 건축구조물에 대하여는 ATC-14와 ATC-22 등이 있으며 교량구조물에 대하여는 ATC-6-2와 FHWA 배너링 등이 있다. 이러한 평가방법들에 있어서 특이할 사항은 제한적이며 구조물의 거동(즉 힘-변위 관계)을 고려할 수 있으며, 현행설계기준은 근거로 각 구조요소에 대한 보유능력/요구량 비례(capacity/ demand ratio)를 산출하여 평가한다. 그러나 구조요소는 가정된 단면력을 비례하여 크기를 변, 전단 및 축반 항력이 있으며, 세부로 정착재의, 이취재의, 전단재의 간격, 구조물과의 접촉면, 편평, 환지가 없는 구간의 값, 보수 등 접합 부 강도 및 좌대길이(seat width) 등이 있다. 그러나 이러한 방법은 비용 사용은 균일하지도로 구조요소들간 상호작용 및 지진조건의 반복적인 요인(cyclic effect)과 시간적인 요인(duration effect)을 제대로 고려할 수 없으므로 평가결과에 대한 신뢰성에 의문이 제기된다.

그러므로 실험을 통한 방법이 구조물의 내진 성능평가에 선호되고 있으며, 실제로 많은 실험연구들이 보고되어 있다. 그러나 실험에 의한 평가에도 불구하고 한계가 있다. 일정적인 내진 성능평가 작업을 위하여 모든 단상 구조물을 실험하는 것은 비용과 시간의 측면에서 비효율적이며 가능하지도 않다. 이를 극복하기 위해 소수의 구조물에 대한 실험결과를 일부 반영하여 실험과정을 거치지 않은 다른 구조물의 내진 성능예측에 이용할 수가 있다. 즉 서로 다른 재료, 상세한, 구조방식간 및 서로 다른 구조물 보강방법간의 실험결과를 객관적으로 비교할 수가 있다. 본 논문에서는 다양한 시험방법의 내진 실험결과를 보다 효율적으로 사용하기
위하여 무차원화 한 에너지 흡수효율(normalized energy absorption efficiency)에 의한 구조물의 내진 성능평가방법을 제안한다. 에너지 흡수능력은 침하중전달능력 및 소량변형능력 뿐만 아니라 지진하중의 반복적이며 시간적인 요인 이 구조물에 미치는 효과를 포괄할 수 있다. 또한 에너지 흡수능력을 각 구조물의 매커니즘 강도에 대하여 무차원화 하면 서로 다른 재료간, 상세간, 구조방식간 및 서로 다른 크기의 구조재간의 객관적이고 또한 가능해진다. 마지막으로 실제 구조물의 일부 및 이의 1/3 축소 전체모델간의 반복하중에 의한 실험결과 비교에 제안된 내진 성능평가방법을 적용하여 그 타당성을 보이고자 한다.

2. 에너지 흡수효율

일반적인 에너지 개념은 연속체의 탄성해석에 많이 사용되어온 억속성 개념이다. ① 이 때의 에너지는 탄성체의 회복을 위하여 저장되는(restoring) 에너지로서 소산되지 않는다고 가정한다. 즉 구조물의 거동이 재료나 기하학적으로 일정하기보다는 비선형이건간에 구조체는 탄성 거동하여야 한다는 가정이다. 본 논문에서는 이러한 일반적인 개념의 에너지를 넘어서 생각해 보기로 한다.

현행기준에 따라 설계된 대개의 구조물에 지진하중이 작용하면 구조체는 손상을 입을 때까지 이상 연속체로 남아있지 않으며, 결과적으로 비탄성 거동을 하게된다. 이 때의 에너지는 회복되지 않으므로 구조물의 비탄성 거동을 통하여 흡수되어야 소산되어야지 적다. 따라서 단련해어금과 같이 비탄성 거동을 대신하여로장치가 없는 한, 에너지의 소산은 구조체의 손상을 의미한다고 할 수 있다. 여기서 구조체의 비탄성 거동에 의하여 소산될 수 있는 에너지는 구조체 고유의 재료가 형성 및 구법에 의한 에너지 보유량(capacity)을, 그리고 지진으로부터 구조체에 전달되는 소산하여야 할 에너지는 에너지 요구량(demand)을 의미한다. 에너지 보유량이 에너지 요구량을 초과하여야 구조물이 정상 지진에 대하여 안전하게 거동한다고 할 수 있다.

2.1 변형에너지

변형에너지(strain energy)는 Fig. 1과 같이 재료의 응력-변형률 곡선으로 드러나는 변형으로서 재료의 단위 체적당 흡수할 수 있는 에너지의 양이다. 그는데 구조체의 변형이 외부로 변환될 수 있는 내부일(interernal work done—IWD)은 구조체의 체적을 고려하여 다음과 같이 나타낼 수 있다.

\[IWD = \int_0^V \sigma \, dV \]

\[(1) \]

외부에 의하여 구조체가 변형하면 외부일(external work done—EWD)은 Fig. 2와 같이 힘-변위 곡선으로 드러나는 변형이 되고 다음과 같이 된다.

\[EWD = \int F \, dA \]

\[(2) \]

하중에 의하여 구조체가 변형할 때 발생한 외부일 과 내부일은 서로 같아 되어 \(EWD = IWD \)가 된다. 이로부터 변형에너지와 외부일은 서로간의 함수로 나타낼 수 있으므로 보유능력으로서의 누적손실량을 특정한 파괴유형의 변형에너지를 이용하여 구할 수 있음을 이미 알려진 바이다. ⑥ 이러한 변형에너지와 외부일의 관계는 구조물의 비탄성 거동의 원인이 명확히 파악될 때에만 가능하지만 일반적으로 구조물이 파괴되기 전에는 파악하기 어려우므로 여러 가지 가능한 파괴유형을 고려하여 에너지 보유량이 가장 작은(즉 불리한) 파괴유형을 택하여 문제를 해결하였다.

본 논문에서는 여러 가지 파괴유형을 이론적으로 고려하기 보다는 실험으로부터 얻은 결과를 객관적으로 정리하는 방안을 제안하여 여러 가지 구조물의 내진 성능평가에 이용할 수 있도록 하고자 한다.
2.2 에너지 흡수효율

서로 다른 형태(기하학적 및 재료 그리고 크기 등)의 구조물의 상호간의 간선적인 내진 성능비교는 실험에 의한 에너지 흡수효율 비교으로써가능하다. 이를 위하여 제 1차 반응의 안정성(hysteresis rule)에 의한 값을 기준으로 삼는 것이 필리하다. 본 논문에서는 탄성-완전소성(elasto-perfectly plastic—EPP) system에 대한 구조물의 에너지 흡수효율을 고려하고자 한다.

Fig. 3에 제시된 EPP System에 의하여 흡수 누적된 에너지 (cumulative energy) \(\Sigma E_{\text{EPP}} \)를 평행변형법의 정의에 의하여 정의할 수 있는데, 누적소성변위(cumulative plastic drift)를 사용하여 이를 수식으로 표현하면

\[
\Sigma E_{\text{EPP}} = \Sigma (F_s^+ + F_s^-) (\Delta_s^+ + \Delta_s^-)
\]

또는 누적소성변위 각도(cumulative plastic drift angle)를 사용하여 나타내면

\[
\Sigma E_{\text{EPP}} = \Sigma (F_s^+ + F_s^-) (\theta_s^+ + \theta_s^-) h_c
\]

여기서 \((F_s^+ + F_s^-)\)는 양방향 메커니즘 과정강도의 합으로서 대칭구조물에서는 \(2F_s\)으로 표현할 수 있는데, 이때 \(F_s\)은 메커니즘 평균 과정강도라고 할 수 있다. 또한 \(h_c\)는 구조물의 SDOF system으로 간주했을 때의 순수길이 또는 순수순응이다. 소성변위는 전체변위로부터 탄성부분을 감히 없이며 다음과 같은 관계가 있다.

\[
\Delta = \Delta_e + \Delta_p
\]

\[
\theta = \theta_e + \theta_p
\]

여기서 \(\Delta\)는 탄성영역, \(\theta\)는 소성영역을 의미한다. 대칭구조물에 양방향으로 같은 크기의 소성변위 각도를 유발하는 \(\mu\) 회의 반복정지가 작용할 때 EPP system에 의하여 흡수 누적된 에너지는 식 (4)로부터

\[
\Sigma E_{\text{EPP}} = 4n F_s^+ h_c \theta_p
\]

지진과 같은 반복되는 변위의 크기가 몇 수를 알 수 없는 경우에는 식 (7)은 다음과 같이 된다.

\[
\Sigma E_{\text{EPP}} = 2F_s^+ h_c \Sigma \theta_p
\]

EPP system에 대한 일반 구조물의 실험에 의한 에너지 흡수효율 \(\eta\)는 다음과 같이 정의된다.

\[
\eta = \frac{\Sigma E_{\text{EXP}}}{\Sigma E_{\text{EPP}}}
\]

여기서 \(\Sigma E_{\text{EXP}}\)는 실험을 통하여 관측된 누적 에너지 흡수량이며, 반복정지에 의하여 소모되는 에너지이며, 실험에서 관측된 형-변위 곡선에 의하여 등리적인 관점으로서 수치해석 기법을 이용하여 식 (2)로부터 다음과 같이 계산한다.

\[
\Sigma E_{\text{EXP}} = \int F \, d\Delta
\]

\[
= \Sigma \left(\frac{F_i + F_{i-1}}{2} \right) (\Delta_{k,i} - \Delta_{k,i-1})
\]

여기서 \(F_i\) 및 \(\Delta_{k,i}\)는 각각 step \(i\)에서의 철력 및 소성 형변위이다. 일반적인 구조 system이 EPP system과 특감은 비율로 지진에너지의 소모시킨다고 가정하면, 이 때의 에너지 효과율은 100% 즉 \(\eta = 1\) 이 된다.

2.3 에너지곡선

에너지 흡수효율의 개념 및 용도를 보다 효과적으로 보이기 위하여 \(\Sigma E_{\text{EPP}}\) 및 \(\Sigma E_{\text{EXP}}\)를 \((F_s^+ + F_s^-)\) \(h_c\)로 나누어 무차원화 하면 식 (8)은

\[
\frac{\Sigma E_{\text{EPP}}}{(F_s^+ + F_s^-) h_c} = \Sigma \theta_p
\]

가 되고 식 (10)은

\[
\frac{\Sigma E_{\text{EXP}}}{(F_s^+ + F_s^-) h_c} = \frac{1}{4} \Sigma \left(\frac{F_i}{F_s^+} + \frac{F_{i-1}}{F_s^-} \right) (\theta_{k,i} - \theta_{k,i-1})
\]

가 된다. 식 (11)과 (12)를 식 (9)에 대입하면 해당 구조체의 에너지 흡수효율이 구해진다. 여기서 식 (9), (11), (12)로부터 \(\Sigma E_{\text{EPP}}, \Sigma E_{\text{EXP}}\) 및 \(\eta\) 모두 누적소성변위각 \(\Sigma \theta_p\)의 함수임을 주목할 필요가 있다.

식 (11)과 (12)를 사용하여 모델 Fig. 4와 같은 에너지곡선 (energy curve)을 얻을 수 있다. 그림에서 보이는바와 같이 EPP system에 의하여 흡수 누적된 에너지는 기울기 1인 직선으로 표현되고, 다른 구조 system들은 재료 및 상대의 특성에 따라 각 반복정지에 의한 곡선에 따라 에너지곡선의 형상이 결정된다. 에너지곡선은 Fig. 5와 같이 곡선이 수평 하게 되는 경우가 pos. 1 및 2에 의하여 그 성격, 즉 에너지 흡수능력을 결정되는데 이를 요약하면 다음과 같다.
3. 요구되는 누락소성비위

Fig. 4와 같은 4가지 구조 system의 에너지흡수율을 구하여 보자. 그림에서 보이는 바와 같이 에너지흡수율은 누락소성비위에 따라 변화하므로 에너지흡수율은 일정한 값을 갖는 것이 아니라 누락소성비위에 따라 값이 달라지게 됨을 알 수 있다. EPP system과 비교한 에너지흡수율의 형태가 대체로 일치하지만, 특정 구조 system의 에너지흡수율은 구하려면 에너지흡수율에서 고려하여야 할 누락소성비위를 알아야 한다. 예를 들어 그림에서 누락소성비위가 $\Sigma \theta_r = 0.1$ radian에서의 에너지흡수율은 식 (9)로부터 ductile system은 $\eta = \frac{ad}{ae}$, semi-ductile system은 $\eta = \frac{ac}{ae}$, brittle system은 $\eta = \frac{ab}{ae}$가 되어 서로 다른 구조 system을 특정 누락소성비위적에서 에너지흡수율에 의하여 비교할 수 있게 된다.

앞서 언급하였듯이 누락소성비위는 변형에너지의 허용한도를 이용하여 구할 수 있는 보유능력으로서 간주될 수도 있지만, 동시에 입력과재가 가지고 있는 지진에너지의 구조물의 소성 허용한도에 의하여 소산시켜야 하는 요구로로서 해석할 수도 있다. 이 경우 특정 지진에 의하여 요구되는 누락소성비위는 시간이하해석을 이용하여 구한다.

식 (9), (11) 및 (12)에서 보이듯이 구조물의 에너지흡수율은 누락소성비위가 $\Sigma \theta_r$에 따라서 변화하므로 에너지흡수율은 계산될 특성 지진에 대하여 요구하는 누락소성비위가 $\Sigma \theta_r(d)$를 정의해 결정하는 것이 중요하다. 이를 위하여 손수실이 h_r, 무게 W인 SOOF 구조물의 소성비위가 θ_r를 유용하는 변형비중을 사용한다고 가정한다. 그러면 이 구조물에 적용하는 n회의 변형비중에 의하여 소모되는 에너지(hysteresis energy) E_k는 Fig. 3의 빗기를 판단한 면적에 해당한다. 이 구조물의 에너지흡수율은 η라고 하면 E_k는

$$E_k = n \eta (2cW) (2\theta_r h_r)$$

여기서 c=밀집단계係数(base shear coefficient)이고 $2cW$ 및 $2\theta_r h_r$는 각각 백합상응곡선(hysteric loop)의 강도측의 원이와 변형축의 길이를 나타낸다. 식 (13)의 양변을 구조물의 무게로 나누면

$$\frac{E_k}{W} = 4\eta c h_r n \theta_r$$

이 공식에서 E_k/W는 에너지를 허용한도로 나눈 것이므로 무게 W의 구조물을 작용하는 지진에에 의하여 에너지 E_k가 생성되기에 위하여 요구되는 누락소성비위임을 알 수 있다. 그러므로 식 (14)는 다음과 같이 나타낼 수 있다.

$$\frac{E_k}{W} = \Sigma \theta_r(d) h_r$$

여기서 $\Sigma \theta_r(d)$는 요구되는 등가 누락소성비위류로서 다음과 같다.

위에 열거한 에너지흡수율의 특성을 제한된 수의 실험결과로부터 보완한 것이므로 다양한 구조계의, 상세 및 구체에 대한 에너지흡수율의 특성을 경계하기 위하여는 많은 수의 실험결과로부터 에너지흡수율을 정리할 필요성이 제기된다.
\[\Theta_\nu(d) = 4 \eta \tan \Theta_\nu \]

그리므로 특정 지진을 견디기 위하여 요구되는 에너지 흡수량 \(E_b \)를 알면 요구되는 누적소성변위 \(\Theta_\nu(d) \)를 산정할 수 있게 된다. 즉 식 (15)로부터

\[\Theta_\nu(d) = \frac{E_b}{Wh_c} \]

Chang과 Mander(8)는 저사자를음로에 근거하여 여러 가지 지진과 거동모델에 대한 에너지 스케일이를 개발하였는데 식 (17)에 적용하여 보면 대개의 일반적인 지진의 경우 요구되는 누적소성변위는 \(\Theta_\nu(d) \leq 0.1 \) radian이 되고, 안전 측으로 최대 발생 가능한 지진(maximum credible earthquake)에 대하여는 \(\Theta_\nu(d) \leq 0.2 \) radian이 된다.

그러나 이는 일회의 지진발생에 대하여 요구되는 누적소성변위이고, 지진발생 후 손상된 구조물의 표면적(cosmetic) 수리 후 구조물을 사용하는 중에 다시 지진을 경험하게 되면 \(\Theta_\nu(d) \)는 누적되어 값이 증가하게 되며 따라서 에너지 흡수율은 저하된다. 이러한 일련의 '지진발생→표면적 수리→지진발생' 사이클을 몇 번 반복하게 되면 누적소성변위가 증가하여 에너지 흡수율은 극히 작아지게 되며 결국은 구조물의 붕괴로 극복하게 됇을 Fig. 4로부터 추측할 수 있다. 여기서 구조물의 붕괴는 구조물이 심하게 손상되어 반복하중을 통하여 더 이상 에너지를 흡수할 수 없는 상태, 즉 에너지전환의 기기가 수평으로 되거나 에너지전환의 진행이 멈춘 상태를 의미한다.

4. 적용예제

본 논문에서 제시한 에너지 흡수용에 의한 구조물의 내진 성능평가를 적용하기 위하여 Fig. 6 및 Fig. 7의 두 개의 구조물을 고려하기로 한다. 두 구조물 모두 Mander 등(9,10)에 의하여 실험·보고된 것으로 Fig. 6은 내진설계 되지 않은 30년 연령의 원래재의 실제구조물(full scale—prototype) 중 일부(subassemblage)를 취하여 실험한 것을 나타내고, Fig. 7은 Fig. 6의 원래재의 구조물의 1/3 측소모델을 만들어 구조체 전체를 실험한 것을 나타낸다. 두 시험체 모두 증명적 반복하중에 의하여 실험하였으며, 실험결과 얻은 허-변위 트로는 실물구조 및 구조물 1/3 측소모델 각각 Fig. 8 및 Fig. 9에 보여지고 있다.

예제의 두 구조물의 내진 성능을 비교하기 위하여 우선 서로 유사한 점을 고려하면, 둘 다 철근콘크리트 콘크리트라고 하나는 원래재의 구조물이고 다른 하나는 이를 1/3로 축소한 모델이므로 이들의 내진 성능은 비슷할 것으로 기대된다. 그러나 두 구조물은 크기가 다르며, 하나는 구조체 전체를 실험한 반면, 다른 하나는 구조체의 일부만을 실험한 것이므로 두 구조물의 내진 성능을 허-변위 곡선을 기준으로 단순 비교하기에는 무리가 있음을 직감하게 된다. 또한 1/3 측소모델이라고 하지만 재료 및 시공의 한계 그리고 실험조건 등에 의하여 완벽한 상사성(similitude)을 기대할 수 없다는 것이 측소모델 실험에서 당연히는 일반적인 난제이다.11) 또한 실험결과에 관한 파괴형태는 Fig. 6의 구조물을 보-기동
5. 결론 및 추후연구

본 연구를 통하여 이끌어낼 수 있는 결론 및 에너지 개념을 이용한 내진성능평가방법을 발전시키기 위하여 요구되는 추후연구는 다음과 같이 정리된다.

(1) 다양한 시험체의 내진 실험결과를 비교하기 위한 방법으로 에너지 흡수효율을 이용한 구조물의 내진성능평가방법을 제안하였으며, 여러 유형의 기하학적 및 재료적 측면에서 서로 다른 구조물을 지진에 서너지 흡수능력에 따라 상대적으로 해석정확한 감각적인 관점에서 비교할 수 있음을 보여주었다. 극단적으로는 철근콘크리트 구조체와 철도 구조체와의 비교, 내진모양경·후의 비교 및 내진보강방법 간의 비교도 가능하다고 하겠다.

(2) 제안된 내진성능평가이론은 내진설계되지 않은 30년 된 실제 구조물의 불안정한 구조물에 적용한 결과, 누적성능계수가 0.1~0.2 radian 사이에서 각각 0.25 및 0.34~0.38의 에너지 흡수효율을 보여주었다.

(3) 제안된 내진성능평가방법을 실무자원에서 사용하기 위하여 충분한 실험결과의 정리와 다양한 기준모델 및 파괴비중을 고려한 에너지스트립의 연구개발이 필요하다.

감사의 글

본 연구를 수행하는데 도움을 준 University of Canterbury (New Zealand) 로봇공학과의 Dr. John B. Mander의 조언에 감사 드린다.
참고 문헌

7. 김정훈, "에너지에 근거한 철근콘크리트 구조물의 내진성능 평가 I - 원안소", 한국지진공학회논문집, 제3권, 제3호, 1999. 9, pp. 33-44

11. ACI, Models for Concrete Structures, ACI Publication SP-24, American Concrete Institute, Detroit, 1970.