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ABSTRACT

A new approach for motion control of constrained mechanical systems is proposed in this paper. The approach uses a
new equations of motion which is proposed by Udwadia and Kalaba and named Udwadia-Kalaba’s equations of motion
in this paper. This paper reveals that the Udwadia-Kalaba’s equations of motion is more adequate to model constrained
mechanical systems rather than the famous Lagrange’s equations of motion at least for control purpose. The proposed
approach covers most of constraints including holonomic and nonholonomic constraints. Comparison of simulation
results of two systems which are well-known in the literature show the superiority of the proposed approach.
Furthermore, a special constrained mechanical system which includes nonlinear generalized velocities in its constraint
equations, which has been considered to be difficult to control, can be controlled easily. It shows the possibility of the
proposed approach to being a general framework for motion control of constrained mechanical systems with various
kinds of constraints.

Keywords : Udwadia-Kalaba’s equations of motion, constrained mechanical systems, holonomic and nonholonomic
constraint, Moore-Penrose generalized inverse, nonlinear generalized velocity, generalized constraint force

Lagrangian multipliers. It becomes usually a source of

1. Introduction uncertainty and is desirable to avoid it in the case of

motion control.
Udwadia and Kalaba'”’ proposed a new method

Interests on the control of mechanical systems with ] i )
which deals general equations of motion for constrained

kinematic constraints are increasing recently. The ) ) o i
constraints in the category encompass usually holonomic discrete dyﬁamlc systems. Explicit equations of motion
and nonholonomic constraints. Numerous papers have and generalized fo.rcc of constraint can be obtained for
been published on the control of mechanical systems the  system  with  constraints of the form

with holonomic constraints""?*®. On the other hand, A(g.9:)9=b(g.q.1) where A is a known mxn

control of mechanical systems with nonholonomic matrix, b is a known m vector, and g is # generalized
constraints is investigated somewhat recently and coordinates. It includes, among others, the usual
relatively small number of papers are found in holonomic and nonholonomic constraints.
literature”"®' Furthermore, they usually deals with In this paper, the Udwadia and Kalaba’s equation is
some specific examples. modified for the motion control design of constrained
Traditionally, Lagrangian mechanics is adapted for the mechanical systems. In Section II, the Udwadia and
modeling of mechanical systems with holonomic or Kalaba’s equation is summarized briefly. The equation if
nonholonomic constraints. It requires the use of modified in Section III for the motion control design of
Lagrangian multipliers which in turn means force constrained mechanical systems. New dynamics of the
measurement when one needs to feedback the constrained mechanical system and new input matrix are
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introduced. Two examples from literature are simulated
in Section IV for verification of the use of Udwadia and
Kalaba’s equation for with
nonholonomic constraints. Section V concludes this

mechanical systems

paper with concluding remarks.
2. Background Material

Udwadia and Kalaba” proposed a novel method
which yields the explicit general equations of motion for
constrained discrete dynamic systems. The method can
handle many kinds of constraints including holonomic
and nonholonomic constraints. Main results of the
method are briefly reviewed in this section for later use.

The equation of motion of an unconstrained discrete
dynamic system can be represented as

M(q,t)g = 0(q.4.1) (H

where geR" is the generalized coordinates,
g=—q,4=—q,the nxn matrix M is symmetric and
positive definite, and n -vector O is the portion of the
system that is not directly related to the acceleration ¢ .

Suppose that the system is subjected to the following
constraints,

49,4, =b(q.4,1) @)

where A4 is a known mxn constraint matrix and b is
a known m -vector. It can be seen that (2) includes
holonomic, nonholonomic, and many other kinds of
constraints.

The explicit equations of motion of a discrete dynamic
system (1) under (2) can be written as
M(q.0)g =q.9.0)+ O (9,4.1) 3)

where n -vector Q,.(q,q,t) represents the generalized
constraint forces.

The first main result of Udwadia and Kalaba'” is the
derivation of the explicit equations of motion under
constraints (2) as

Mg=0+K(b-AM™'Q) 4

where the mx n matrix K(q,é,t)=M”2(AM'”2)+
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and where is M'/? a unique positive definite square
root of a positive definite matrix M and ‘+’ denotes the
Moore-Penrose generalized inverse (see Penrose®).
The second main result is the derivation of the explicit
equations for the generalized constraint forces as
0:(9.4.) = K(b-aM~'0). (5
It is worth to note that equations (4) and (5) are
derived independent to any specific problem.

3. A New Model for Motion Control of Constrained
Mechanical Systems

In this section, a new modeling method for motion
control of constrained mechanical systems is derived
using the Udwadia-Kalaba approach. The constraints can
be holonomic, nonholonomic, and many other forms
even nonlinear in ¢, . and ¢ .

Consider a mechanical system to be controlled whose
model is represented as

M(g,0)§+Glg.4.0) =1 (6)

where n -vector 7 is the external forcing term.
Suppose that the system is under the constraint

f(4.4.1)=0 (N

where f(-):R"xR" xR— R™ is assumed to be C'
(i.e., differentiable).

The control problem is to find, which may be
dependent on ¢.q , and ¢ . such that one may achieve a
given task while observing the constraint for all r>1g,
¢y is the initial time. The constrained mechanical system
(6) and (7) can be rewritten like the form of (1) and (2) in
order to use the Udwadia-Kalaba approach. First, the
unconstrained equations of motion (6) can be rewritten as

M(qsf)'q.=T—G(4s4’f)- (8)
Comparison of (1) and (8) gives
Q(q"i-t) =7T- G(qs(i*t) . (9)

Secondly, the constraint (7) can be represented like the
form of (2) by differentiating it with respect to .
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Differentiation of /(@49 in (7) with respect to !
yields

& S dg Sdg T

= . (10)
dt 0Ogdt 0Oqdt ot
or
ar o . o . of
——= gt =g+ —— 11
i g7 % H (1
Therefore equations (2), (7), and (11) give

. of . o . o

Alg.q,t) = = d blq.q,t)==-g-=. 12
(qq)aqan (qq)aqqat (12)
Note that the derivatives such that z are to be

interpreted as vector forms since the dimefidions of fq
and ¢ can be more than one. So, a mechanical system in
(6) which is to be controlled under the constraints (7) is
represented like equations (1) and (2) in the Udwadia-
Kalaba approach through (8) and (12).

Application of (4) to the mechanical system with (8)
and (12) yields

Mij=1-G+M"*C*[b-aM " (z-G)) (13)
where C = AM ™2 of course, the existence of M~

is assumed in the approach.
Equation (13) can be rearranged as

MG+G-M"2C* b+ AM7'G) 4
=(1-M"2CTam My,

The left-hand-side of (14) is the “new” dynamics of
the constrained mechanical system and the right-hand-
side is the control with “new” input matrix. Usually, the
rank of /-M"2C*AM ™! is lower than that of / and
the system is “underactuated”. It means that the system
can be feedback stabilized to an equilibrium manifold
with smooth feedback in this case. It is pointed out in
Bloch and McClamroch®, Campion et al.”®), Bloch et
al.*®), and Su and Stepanenko®.

It is worth to note that (14) is decoupled with the
generalized constraint forces. [t means that the motion of
a mechanical systemn under constraints can be controlled
using only position and velocity feedback, i.e., it does
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not need force sensing.
Application of (5) to the mechanical system with (8)
and (12) gives

Q. =M"2C*(b+ AM7'G)-M"2Ct aM 'z . (15)

Equation (15) gives the possibility of the control of the
generalized constraint forces if desired.

The new modeling method is suitable for motion
control since the constraints are embedded into the
“new” dynamic equation. The validity of using the
Udwadia-Kalaba approach for motion control purpose is
demonstrated in the following section with some

simulated examples.
4. Simulated Examples

Validity and efficiency of using the Udwadia-Kalaba
approach to the control of mechanical system with non-
holonomic constraint is demonstrated in the example 1.

Example 1. Equations of motion of a wheeled robot
moving on a horizontal plane in Su and Stepanenko®
with L =P =1 are adopted in this example, where P is
the radius of the wheels and 2L is the length of the axis
of the front wheels. It is constituted by a rigid trolley
equipped with non-deformable wheels. The physical
configuration and derivation of the equations can be
found in Campion ef al.® and d' Andrea-Novel er al.!'?.

The unconstrained equations of motion can be
expressed as

M = —(uy +uy)siné
my = (uy +uy)cosl (16)

Ioézul —Uup

where x and y are generalized coordinates which
represent the position of a reference point of the robot,
@ is a generalized coordinate for orientation of the robot,
m is the mass of the robot, / is its inertia with respect
to a vertical axis which is passing through the reference
point, and u; and u, are control inputs.

Comparison of (16) with (8) and (9) yields and

m 0 0 —=(u) +uy)siné
M={0 m 0]|and g=! (4 +u,)cosd (17)
0 0 /g u) —u,
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The nonholonomic constraint is expressed as
xcosf +ysinf=0. (18)
Differentiation of (18) with respect to ¢ gives
x
[cose sing 0 y =x6sinf- yHcosh . (19)
[

Comparison of (19) with (2) yields

A=[cos€ sing O]and

s . (20)
b=x6sinf - yHcosh.
Substitution of (17) and (20) into (4) gives
m 0 00X —sinf ~—siné
0 m O |y|=I coséf cos 6 {u,}
.. Uy
0 0 o6 1 1 an
cos &
+m| sin @ |(x6sin 6 — 36 cos 6).
0

Equation (21) represents a new equations of motion
where the nonholonomic constraint (18) is embedded.

When the outputs are chosen as [y 6’]T the governing
equations of motion become

[m O}V}_[cosﬁ cosﬂ[ul}
0 1‘o é 1 -1 | )
+m(5130:i(xésin0— $8c0s0).

If the control task is to drive y,y,6, and é to
y=jz=9=é=0,canchoose uy; and u, as

-1 .
8 86 j
u | _[cos8 cos " (58sin 6 — ybcosB)
Uy ! -1 0

—hy—1s3
+[ h Zy-]].e:trf,iézf,--- (23)

where /|, 1, m; and m, can be determined to satisfy
desired performances. This results in

m 04yl | -hy-hy
[0 IO}[é:l_{:—mlg—mzé]' (24)

Equation (24) assures that the control task can be
achieved.

A simulation is performed to the system (21) using the
control (23). System parameters and initial conditions are
the same as in Su and Stepanenko®® for comparison,
ie,m=05 1I;=05 x(0)=0, x(0)=0, »0)=4,
y(0)=0, 6(0)=45° and 8(0) =0 . Control parameters

Figure 1 and 2 show that the control task is achieved
satisfactorily. Much smoother and smaller velocity (in
magnitude) than Su and Stepanenko are obtained even
though the position and orientation trajectories are
similar. Figure 3 shows the control profiles. Much
smoother and smaller controls can be observed also.
Figure 4 shows that the nonholonomic constraint is
satisfied during the motion control.

Another simulated example is investigated for a

Pasition

L L L
0 05 1 15 2 25 3
Time (sec)

Fig. 1(a) Position trajectory of y

0 IJ.IS 1 15 2 25 3
Time (sec)

Fig. 1(b) Velocity profile of y
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Fig. 2(b) Velocity profile of 8 Fig. 3(b) Controt profile of u,
system with a constraint which is nonlinear in 5 .
generalized velocities. So far no other modeling N
technique is able to address such constraint. 3}
Example 2. Consider a simple planar Cartesian 2§
manipulator in  McClamroch and WangV. The 1

unconstrained equations of motion are expressed as

92 L]
At} 0% 1 15 2 25 3

where g; and g, are generalized coordinates and i e
and u, are control inputs,

.......... L 50086 . ——? PSind, ——: i .
Udwadia-Kalaba’s equations of motion Comparison of ( xeos ysin *cosf+ ysinfl)
(25) with (8) and (9) yields Fig. 4. Evaluation of constraint xcosé+ ysin8
M= {1 0} and O __:{“1 ] ) (26) The constraint, after taking derivative with respect to
01 uy t twice, is
The constraint equation is given by G 22
Ba 4.} |=-847 -43. (28)
4gf +¢3 ~1=0. (27)

Comparison of (28) with (2) yields
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A=[8q ;] and b=-847 -43. (29)

Substitution of (26) and (29) into (4) gives

[‘7*}:__._1 [ a —M;%}['ﬁ}
G2] 64gf +q3 | -8q19, 64q7 [ 30)
L84 +a3) [Sql]
64g7 +q5 | 92

Apparently the numerator 64q,2 +q§ is nonzero since
4t +93 —1=0 or 64g% +1645 —16=0. Equation (30)
represents a new equations of motion where the
constraint (27) is embedded. Note that the determinant of
the “new” input matrix is zero, i.e., rank=1. Therefore,
the two control u; and u, are dependent. We propose to
choose

The system is

[‘71} 1 [ a3 —8q1qz]u
2] 64q% +q3 |-8q19; 64qf

et +é§')[8¢h]
64q12+q§ qz

@2

Let the output variables, i.e., the manipulated variable,
be ¢, and ¢, . The dynamics governing the output are

gi| |0 Iq I 0
I . + 2 '—2 b] U
g1] |0 0]dar]| 64gf +43 97 879

) 33)
+[ 0 ]—(8412 +43)
841 64q} +q3
Choose the control u to be the follow:
64q? + g3 . 847 + g2
u= 2‘11 92 —kygy - kagy + 91 2‘12 !
92 - 84192 841(6449; + g3
(34)

The resulting closed-loop system is

Q[0 1 e
Lil} Lk\ ‘kle} )

The system can be made asymptotically stable by any
choice of k >0 and k; >0 . This renders ¢, - 0 and
gy >0 ast—>wo.

If the task is to drive and then the control law needs to
be modified:

64g2 +q2 .
u= __2‘11_2_(_ kg — kg
97 —8q19; (36)

+(84f +3d3)/ 81 (64gt + a3+ kiqra + kacha)

It is assumed that ¢,; and ¢, are constants. It shows
that the problem in McClamroch and Wang can be
handled easily.

Now, suppose that the constraint is changed to

1 . .
5(q$+q§)=1 37)

This implies that the kinetic energy of the system, even

under the external control u; and u,, are kept constant.
Note that the constraint is nonlinear in ¢, and g, .

Differentiation of the constraint with respect to ¢

yields
1 ... .o
5(261141 +29,4)=0 (38)
or
. .14
o af o -
q2

Comparison of (39) with (2) yields
4=[g g,)andb=0. (40)

Substitution of (26) and (40) into (4) gives

aq 1 2 -q19, || ¥
[-- }’_‘ '2_{ ‘.]2. .]2 2 . (41)
92 ~qi92  9qi U

Equation (41) represents a new equations of motion
where the nonlinear constraint (37) in embedded. The
two control u; and u, are dependent since the input
matrix is of rank 1. We propose to choose
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then (41) becomes

G(_1 a3 —4142}[“} 43
[‘72] 2{—4142 g “

Choose the output to be ¢; and ¢; . The governing
dynamics are

ally " (a4)
Ga | 5(‘7%“41‘?2)“

To drive ¢q; — ¢q;4 and ¢; — ¢y, the control law is
chosen to be:

wm et (k@ - q) kol —dra) (45)
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Fig. 7. Evaluation of constraint _;_(qlz + q%)

where k; >0 and k; >0 and gy, and gy are

constants.
A simulation is performed with initial conditions as
41(0)=0,4;(0)=1.1832,4,(0) =0, and g,(0)=0.7746.

It means (']](0)2 =14 and c']2(0)2 =0.6 in order to
satisfy the constraint -;—(qlz +¢3)=1 . The desired

outputs are g;y; =0.5 and g;y =0 . Control parameters
are chosen to be k) =16 and k, =8. Figure 5 shows that
the control task is achieved satisfactorily.

Figure 6 shows the control profile of u .

Figure 7 reveals that the constraint which is nonlinear
in g, and g, is satisfied during the motion control.

5. Concluding Remarks

It is investigated that the new modeling technique
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using the Udwadia-Kalaba approach has many
advantages for the motion control of constrained
mechanical systems. Control of mechanical systems with
many constraints including nonholomic constraint can be
modeled in a unified way and results a new equations of
motion where the constraints are embedded. It applies to
the constraints that can be nonlinear in ¢, ¢, and . So

far, no other technique applies to when f is nonlinear in

q . The resulting control scheme is only position and

velocity feedback. It does not need force sensing (i.e., no
force feedback). All other technique requires the use of
Lagrange multiplier which in tum means force
measurement (when one needs to feedback the Lagrange

multiplier).

Because of the explicit expression of the equation of
motion, one can see explicitly how the input is affected
due to the presence of constraint (ref. Eq. (14), when the

input matrix is changed from I to I-M"2C*am ™).
This shows the effect of constraint on control. Many
other work (such as McClamroch and Wang!" and Su
and Stepanenko®) treats the Lagrange multiplier as an
external signal to the system.

Two simulated examples are investigated to show the
validity of the method. It should be mentioned that any
elaborated control schemes can be developed more easily
to achieve more complex control tasks from the proposed
modeling technique.
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