Detection Characteristics of TL, ESR and DNA Comet for Irradiated Peanuts by Origins

TL, ESR및 DNA Comet분석에 의한 원산지별 땅콩의 방사선 조사 검지 특성

  • Published : 2001.12.01

Abstract

Gamma-irradiated peanuts, Korean and Chinese origins, were investigated on detection properties by thermoluminescence (TL), electron spin resonance (ESR), and DNA comet assay (single cell gel electrophoresis). TL measurement showed that the non-irradiated sample revealed a glow curve with low intensity at about 25$0^{\circ}C$, while the irradiated samples showed higher intensity around at 18$0^{\circ}C$. TL ratio (TL$_1$/TL$_2$) of area for TL$_1$ glow curve to TL$_2$ was below 0.05 for the non-irradiated sample and 0.2 or more for the irradiated ones, thus identifying each other. ESR spectroscopy for the irradiated peanuts using outer skin showed negligible signals induced by irradiation, indicating ESR is little applicable to the detection of irradiated peanuts. In DNA comet assay, the non-sample had no or very short tails, whereas the irradiated samples revealed the cells with long tails. Significance in the increase of their lengths depending on irradiation dose (r=0.761/Korean, r=0.768/Chinese) was also found. There was no remarkable difference in detection properties by origins of samples in all determinations, It is concluded that TL analysis or DNA comet assay is suitable for detection of irradiated peanuts and a combined method is recommendable for enhancing the reliability of detection results.

현재 중국으로부터 수입량이 증가하고 있는 땅콩을 대상으로 국산과 중국산 시료의 TL, ESR, DNA comet(single cell gel electrophoresis) 분석을 실시하여 원산지별 특성을 비교하였다. Density separation 방법으로 추출한 미네랄의 TL측정 결과, 감마선 조사되지 않은 시료는 25$0^{\circ}C$ 부근에서 intensity가 낮은 glow curve를 나타내었고, 조사 시료는 18$0^{\circ}C$ 부근에서 아주 강한 intensity의 glow curve를 보여주었다. 첫 번째 측정된 glow curve(TL$_1$)의 normalization을 위하여 재조사 방법에 의해 TL$_2$를 측정하여 TL ratio(TL$_1$/TL$_2$)를 비교해 본 결과, 비조사 시료는 0.05 이하, 조사 시료는 0.2이상으로 방사선 조사 여부의 판별이 가능하였다. 땅콩껍질을 사용한 ESR 측정에서는 조사 유래의 특이적인 signal이 나타나지 않아 적용 가능성이 낮았다. DNA comet assay 결과, 비조사 시료는 tail이 없거나 아주 짧은 전형적인 intact cell을 나타낸 반면, 조사 시료는 long tail을 가진 comet을 나타내면서 선량 의존적으로 (r=0.761/Korean, r=0.768/Chinese) tail length가 증가하여 조사 여부의 확인이 가능하였다. 모든 실험에서 원산지별 차이는 크지 않았다. 이상의 결과로 볼 때 땅콩의 방사선 조사 여부 확인에는 TL 분석 및 DNA comet assay가 적용 가능하였다.

Keywords

References

  1. Technical Report Series Wholesomeness of irradiated food. Report of a Joing FAO/IAEA/WHO Expert Committee WHO
  2. International Consultative Group on Food Irradiation Review of data on high dose (10~70 kGy) Irradiation of Food WHO
  3. CAC/VOL, XV,FAO Codex General Standard for Irradiated Foods and Recommended International Code of Practice for the Operation of Radiation Facilities Used for the Treatment of Foods Codex Alimentarius Commission
  4. International atomic energy agency homepage IAEA
  5. Paper presented at Symposium of The Korean Society of Postharvest Science and Technology for the Safety of Food and Public Health Industries and Quality Assurance Infrastructure of quarantine procedures for promoting the trade of irradiated foods. Kwon. J.H.;Chung. H.W.;Kwon. Y.J.
  6. Korea agricultural trade information homepage KATI
  7. Radiat. Phys. Chem. v.36 Thermoluminescence of irradiated foodstuffs. Oduko. J.M.;Spyrou. N.M.
  8. BCR workshop Photostimulated luminescence (PSL). A new approach to identifying irradiated foods. Sanderson. D.
  9. Appl. Magn. Reson. v.10 Electron paramagnetic resonance detection of irradiated foodstuffs Raffi. J.;Stocker. P.
  10. Radiat. Phys. Chem. v.42 Identification of irradiated foods by monitoring radiolytically produced hydrocarbons Morehouse. K.M.;Ku. Y.
  11. J. Sci. Food Agric. v.80 2-Alkylcyclobutanone as markers for the detection of irradiated mango, papaya, camembert cheese and salon meat Stewart. E.M.;Moore. S.;Grahm. W.D.;Mcroverts. W.C.;Hamiltion. J.T.G.
  12. Mutat. Res. v.365 The DNA 'comet assay' as a rapid screening technique to control irrdiated food Cerda. H.;Delincee. H.;Haine. H.;Rupp. H.
  13. J. AOAC Int. v.76 Microbiological screening methods from identification of irradiation of spices and herbs. A BCR collaborative study Wirtanen. G.;Sjoberg. A.M.;Boisen. F.;Alanko. T.
  14. J. Food. Sci. Nutr. v.4 Detection of radiationinduced hydrocarbons and 2-allkylcyclobutanones from peanuts. Lee. H.J.;Lee. M.Y.;Kim. K.S.
  15. English version of DIN EN Detection of irradiated food from which silicate minerals can be isolated. Method by thermoluminescence European Committee for standard
  16. Radiat. Phys. Chem. v.34 Examination of gamma-irradiated fruits and vegetables by electron spin resonance spectroscopy Desrosiers. M.F.;Mclaughlin. W.L.
  17. Kor. J. Food Sci. Technol. v.32 Discrimination of irradiated beef using comet assay Jeong. S.K.;Park. J.H.;Ji. S.T.;Park. K.J.;Kim. H.H.;Hyun. C.K.;Shin. H.K.
  18. Origin tutorial manual. (Version 6.0) Origin
  19. SAS Users Guide SAS
  20. Food Structure. v.12 Luminescence techniques to identify the treatment of foods by ionizing radiation Schreiber. G.A.;Ziegelmann. B.;Quitzsch.G.;Helle. N.;Bogl. K.W.
  21. J. AOAC International. v.78 An interlaboratory trial on the identification of irradiated spices, herbs, and spice-herb mixtures by thermoluminescence analysis Schreiber. G.A.;Hoffmann. A.;Helle. N.;Bogl. K.W.
  22. Paper presented at 11th International Meeting on Radiatino Processing v.110 Thermoluminescence characteristics of minerals from irradiated potatoes with different producing districts Kwon. J.H.;Jeong. J.;Chung. H.W.;Byun. M.W.
  23. Z. Lebensm. Unters. Forsch. v.191 Identification of irradiated foods the thermoluminescence of mineral contamination Autio. T.;Pinnioja. S.
  24. Korean J. Food Sci. Technol. v.31 Detection of irradiated grains using DNA 'comet assay' Kim. C.K.;Yang. J.S.;Lee. H.J.
  25. J. Korean Soc. Food Sci. Nutr. v.29 Detection of irradiated beans using the DNA comet assay Oh. K.N.;Kim. K.E.;Yang. J.S.