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An Efficient Dynamic Load balancing Strategy
for Tree—structured Computations

Injae Hwang' - Dong-Kweon Hong'"

ABSTRACT

For some applications, the computational structure changes dynamically during the program execution. When this happens, static partitioning -
and allocation of tasks are not enough to achieve high performance in parallel computers. In this paper, we propose a dynamic load balancing
algorithm which efficiently distributes the computation with dynamically growing tree structure to processors. We present am implementation
technique for the algorithrm on mesh architectures, and analyze its complexity. We also demonstrate through experiments how our algorithm

provides good quality solutions.
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1. Introduction

Parallel processing is one of the most promising ap-
proaches to solve comptuitationally intensive problems. These
problems arise In many different fields of science and en-
gineering. Even though multiprocessor systems have such
an enormous raw computing power, they can be utilized only
when the problems are efficiently parallelized. To keep all
the processors busy, we have to partition the problem into
many compenents that can be executed in parallel by the
processors i the systems. The term “load balancing” refers
to the activity of distributing or redistributing the workload
among the processors to achieve high performance.

In this paper, we propose an efficient load balancing al-
gorithm for executing algorithms with dynamically chang-
ing workload on parallel computers. When the task al-
location is performed for parallel computers, task inter—
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action graph is constructed for the application. The task
interaction graph represents the amount of computalional
workload and the communication needed between the tasks.
For some algorithms, the task graph is allowed to change
during the course of program execution. In this case, slatic
partitioning and allocation of task graph is not enough to
achieve high performance in parallel computers. Examples
of such algorithms are those that have dynamically grow-
ing tree structures. Searching algorithms ofien employ trees
to explore solution spaces. These algorithms are useful me-
thods for solving optimization problems. Adaptive mesh re-
finement[2] is another example of such algorithms where
fine mesh is imposed on those regions with steep curve as
the computation proceeds. For these algorithms, it is nece—
ssary to reassign workload dynamically in response to the
changes in the computational structure of the program. In
this paper, we present an efficient dynamic load balancing
algorithm which tries to balance the workload among the
processors while keeping the commumication cost under the
acceptable limit. The interconnection networks of parallel
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computers are assumed to be mesh.

2. Related Work

Load balancing and task allocation problems in both dis-
tributed and parallel computing environment were exten-—
sively studied by many researchers. In this section, we sur-
vey some of the related works to this paper.

Hanxleden and Scott [5] developed a testbed for different
balancing techniques including scatter decomposition, bi-
nary decomposition and some dynamic balancing strategies.
They also introduce a simple decentralized balancing strate-
gy in which each node computes the amount of its own wo-
rkload, and broadcasts it to other nodes as load distribution
information ; since this is just a single number, there is little
communication overhead. These approaches were imple-
mented on Intel IPSC/2 distributed memorv parallel com-
puter and their effects on the message size and the number
of messages were observed.

Kopidakis [6] proposed two heuristic algorithms for the
problem of task allocation in heterogencous distributed syvs-
tems. The objective is the minimizaton of the sum of pro-
cessor execution and intertask communication costs. They
transform the problem to a maximization one, where they
try to determine and avoid large communication costs and
mefficient allocations. Their performance is evaluated
through an experimental studv.

So far, we surveyed a few load balancing methods and
most of them are based on static strategies. There are also
many papers which propose load balancing algorithms for
dynamically changing workload. we survev a few of them
in the rest of this section. Pilkington and Baden discussed
a partitioning strategy for non-uniform scientific computa—
tions rurming on distributed memory MIMD parallel com-
puters[8l. They considered the case of a dvnamic workload
distributed on a uniform mesh, and compared their method
against other two methods. It was shown that their method
is superior to the other two in rendering balanced work-
loads.

A parallel method for the dvnarmic partitioning of unst-
ructured meshes was developed by Walshaw and Cross [9].
The method introduced a new iteralive optimization techni—
que known as relative gain optimization. Experiments indi-
cated that the algorithm provided partitions of an equivalent
or higher quality to static partitioners and much more ra-
pidly. The algorithm also resulted in onlv a small fraction
of the amount of data migration compared to the static
partitioners.

Most of the approaches discussed so far fall into one of
the two categories ; centralized and decentralized. In cen-
tralized schemes, load balancing decisions are made by a
central processor. In decentralized schemes, each processor
has to make its own decisions about load balancing after
collecting the necessary status information from only a sub-
sel of all the processors. It also lakes less time to collect
the information from the subsel of processors, and it is not
necessary to broadcast the results of load bhalancing deci-
sions. Centralized schemes however, have the advantage of
making more accurate decisions over decentralized schemes.

In the approach proposed in this paper, global workload
information is used to make the decision on the redistribu-
tion of workload since it is more accurate than local work-
lIoad information used by decentralized methods. However,
by making all the processors work on making load balancing
decision, we can obtain the quicker solution. In addition to
that, the results of the decision need nol be broadcast to other
processor. The actual workload migration occurs after ma-
king the decision on workload redistribution, and usually this
step can take more time than the load balancing activity it—
self. In our approach, the workload migration can take place
while the task distribution is being computed, which results
in reduced load balancing overhead. The above advantages
are the major motivations for developing the load halancing
strategy proposed in this paper.

3. Problem Formulation

There are many algorithms which have tree-structured
task graphs. In such algorithms, the computation starts with
root node and the tree grows dynamically as each node
produces its children. A node in the lree corresponds to a
task and an cdge corresponds Lo communication hetween the
parent node (task) and the child node (task). After producing
children, the parent waits until it receives results from their
children, then terminates. When the child tasks are executed
on the processors different [rom those on which the parent
task is executed, inter-processor communication is nece-
ssary for migrating the child lasks and receiving messages
from them.

With the above tree siructure, the problem is assigning
the nodes of a dynamically growing tree to processors. This
is a very difficult problem since we can not predict the future
growth of the tree. To make the problem more tractable, we
synchronize the cormmputation on all the processors at each
level i of the tree. The tasks at level ¢ in the tree are ge-
nerated and assigned o processors at the same time. The



child task should he migraled from the processor where it
was produced to the processor where it is to be executed.
After the execution of the child task is done, the resull should
be sent back to the parent task. If we assume that the
computational cost of each task and ihe size of message
hetween the parent and child are known, then our problem
hecomes one of distributing the child tasks to processors,
so that computational workload is balanced armnong proce-
ssors and the maximum communication cost is minimized.
To formulate the execution time of tasks at level 7, we
introduce the following notations :

G = (V,E) : processor graph where 1 is the set of proce-
ssor nodes and E the set of communication links

S ! set of tasks generaled at level

E, : execution time of task «

M, > cost of sending the message generated by fask z to
an adjacent processor

B, cost of sending task 2 to an adjacent processor

d{p, p;) - communication distance between processors
and py In G

F:S—=V: flo is the processor where task z was gene-
rated

g: 85—V task assignment function ; g(& is the proce-
ssor where task « is executed

kR V—2 Tinverse of g A(p is the set of tasks assigned

to processor p

Then the total execution time of tasks at level 7 is given
as follows.

T,=max pop( 2, E, )+ max =5 (d{f(@. £ ) B+ M)

ashiy

The first term represents the sum of computational work-
loads of the tasks assigned to processor p and the second
term represents the inter-task communication cost. Then
our load balancing problem can be stated as follows © Given
G, S, f determine g (and hence &) such that 7; i min-
imized.

This problem can easily be shown to he intractable. If we
ignore communication cost and assume that there are only
two processors, partitioning problem can be reduced to this
problem. Since partitioning problem was already shown to
he NP-complete [4], this problem is NP-hard.

4. Proposed Approach

In the approach we propose, we treat inter-task communi-
cation cost as a constraint and try to find an allocation of

m
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tasks which minimizes the maximum computational cost
while satisfying the constraint. With this strategy, the form-
ulation of our load balancing problem is modified as follows :

Tind f (and hence g) such that max ,-,2 s=in E, is
minimized with the constraint thal max ,-.d(f(a). g(a))
(By+M,) £Crax, Where Coa is the acceptable limit for
inter -task communication cost. The parameter Cpy Drovi-
des the desired trade~off between computational and com-
rmunication costs and can be set based on the nature of the
application and the archilectural parameters such as ratio of
comrnunication bandwidth to computational capacity in the
system. When the execution time of each task £, and the

number of processors N are given, Cr. 1S set to —%

so that the communication cost canmol exceed the average
computational cost per processor. In our heuristic algorithm,
Crmae Will be used to limit the maximum distance that each
task carl migrate from the processor where it was generated.

In the heuristic we propose, we first assign a label #, to

each task a that indicates the maximum distance it can

migrate from its cwrently assigned processor. Initially,

c mIx

L=

1, that is, ¢, is inversely proportional to the

amounl of communication required for the task. Each lime
a Task needs to move by distance < during a balancing step,

{. decreases by Zand when ¢, becomes zero il remains
assigned to its current location.

For balancing the computational load, we use a recursive
procedure, that is, first balancing load belween two halves
of processors and then applying the procedure recursively
to the Lwo halves. In order to balance the workload between
two halves, we order the tasks in each half in non-increasing
order of ¢, values (only tasks with strictly positive z, values
are considered). We move tasks from overloaded half to
under loaded hall in the above order. The intuition behind
this order is that if tasks with larger ¢, values are allowed
to migrate first, they can also migrate durning the later
iteralions of the algorithm allowing a better chance to
halance the workload. Also from the point of view of task
migration cost, smaller sized tasks are preferred over larger
sized tasks.

We consider an approach for implementation of this
heuristic on multiprocessor systems. In this approach, each
processor first creates a “token” or a “packel” for each tagk
that it has. This token contains information about the task
such as the amount of communication required, presently
assigned location(processor), z, value etc. During the load
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halancing procedure, every processor {irst broadcasts all the
tokens it has, to every other processor in the system. During
the first iteration, each processor does the same computation,
namely atternpt to balance the load between Lwo halves of
processors using the proposed heuristic. During the second
iteration, all the processors in a hall do the same compu-
tation, namely attempt to balance the load between two
quadrants of that half. Thus this process proceeds up to
log N (assuming N {o be a power of 2) iterations, where

during the i-th iteration (0 < < logN—1), a group of zﬂ

processors performs the same task of balancing workload
between two halves of the group. In the next section, we
give details of the algorithm and analyze its time complexity.

5 Load balancing Algorithm

In describing our algorithm, we use a mesh archilecture
though the algorithm is easilv applicable 1o other regular
topologies such as hypercubes. The number of processors
is assumed to be N (VN processors in each row and column
labeled from 0 to vV — 1). Each processor is denoted by P,,
(0 <i<VN-1, 0< ;< VN—1). The detailed descriplion of
the algorithm is as follows.

1. Generale a packet <E, ¢, C,> for each task « to be
allocated where
E, : Execution time of task «
¢, . The maximum distance task @ can migrate from its
current location
C, ! Index of the processor to which task « is currently
assigned Initially, C, is set to the index of the proce-
ssor where task ¢ was generated
2. Each processor broadcasts the packets generated in pre-
vious step to all other processors using multinode broad-
cast algorithm [3].
3. After processors receive the packets, they execute the fol-
lowing algorithm.

Procedure LoadBalancing
LV _ cut =1 // When V_cutis 1, workload is
balanced between left and night sets of processors //
for £ = 0 to logN — 1 do
if V_cut = 1 then
for each P, , do in parallel
Let A be the left set of processors
Let B be the right set of processors
Call MigrateTasks( A, B)
else // If V_cut =0 (When V_cut is 0,
workload is balanced between upper and

2.
3
4,
5.
é
7

lower sets of processors in the same wav) //

8 V_cut = (V_cut+1)mod+2
end Procedure LoadBalancing

Procedurc MigrageTasks (A, B)
I Let Ls be (_Z."E,,

2 Llet Lp be 2, £,
(=8
I L= L,
2
4.4 a7 > e then // £ 1s a small number denoting

la,= -

load imbalance tolerance limit //

5. if Li>Ly, then //Move tasks from A to B. //
6. let S— (el C,eA,E,<A ; andt,>0}
7. Find Dy = min{f, | 2 =8}

and Dy = max{t, | a =35}
8. Partition § into Sp,,.*". Sb,,

where §,={a=5](=7).
9. for 7= Dpw t0 Dy do
10. et To={a),, a,) where o, =95,
11. Call SelectTask (71, o1 7)
12 for cach task o, =T,
13. if E, { E, then
14, Send task e, to the nearcst processor

in B, and change C, to the index
ol the processor.
15, Li~L,—E,, Lg=Lgt+E,
16. A,_=_iL/‘2—L”l
endif
17. if ~;=¢ then return
endfor

endfor
else // if La<Lp//
18, do similar task migration rom B to A.
endif
end Procedure MigrageTasks

Procedure SelectTask (W, 4, 7)
Given a set of tasks W= {ay, ;- 2,}, and a positive integer &,

return an index # such that the following is true: 2, &, ¢ & and
e W,
2 E;i<a
12wl

where W, ={1=/</|E,<E,}and W.={1=i=I|E,<E,}
This procedure is just a weighted selection problem and can be solved
by a divide-and-conquer algorithm just as in the selection problem
[11; we omit the details here.

end Procedurc SelectTask

In the above procedure, all the processors compute the
same task distribution between the left and right halves of
the processors during the first iteration of the loop. During
the second iteration, each half of the processors compute the
task distribution between upper and lower quadrant of the
processors. During the {inal iteration, each pair of processors
compute task distribution between them. By having many
duplications of the same computation among processors, the
result of the computation does not have to be broadcast to



olher processors. After each iteration, all the processors have
the necessary information for task migrations between the
two sels of processors. All the processors use the same tie-
breaking policy to get the same result for identical compu-
tation. At line 14 in procedure MigrateTasks, the selected
task can be sent to any processor in the set B, Since it can
further migrate Lo other processor in the later iteration, sen-
ding it 1o a particular processor is nol necessary. And, the
processor does not need to wait until the execution of the
algorithm is completed. Since computing task distribution
needs only packets not actual tasks, computation can proceed
while tasks are being migrated. Therefore, task migration
and computing task distribution can overlap in our algorithm.
If task @ was selected to be migrated but it is not available
yet, the processor just need 1o remember its destination, and
it is sent to that destination when available.

The analysis of time complexity of our load balancing al-
gorithm is as follows. In step 1, a packet is generated [or
each task. This will take O(mu.) time where m g, is the
maximum number of packets a processor generates. For step
2, following result will be useful. Suppose there is a linear
array of IV processors, each having a certain number (not
the same number) of packets with a lotal of M packets.
Broadcasting can be achieved in Q(M+ N) steps where al
each step, a processor can send (and receive) a packet to (from)
ils neighbors. From this result, step 2 takes O(M+ N). Let’s
derive the time complexity of step 3, namely the procedure
LoadBalancing. Lines 1 -8 in procedure MigrateTasks
takes O(M) time. Since procedure SelectTask takes O(| W)
time, lines 9 - 17 take O(M) time on for all the iterations
of loop 8. Procedure MigrateTasks is called logN times.
Hence, step 3 takes O(MlogN) time. Including all the four
steps, the total time complexity of our load balancing algo—
rithm is O(N-- Mlog N).

6 Experimental Results

We performed simulation to test the accuracy of solutions
provided by our load balancing algorithm. We randomly
generated the trees, and applied the proposed load balancing
strategy to assign the tasks to processors. For the first few
generations, the number of tasks can be much smaller than
the number of processors, and load balancing is not impor-
tant during thal time. Therefore, we assumed that the proce—
ssors initially have a certain number of tasks (No_Tasks)
and the number of child tasks created has an exponential
distribution with a mean value of 1. We also assumed that
the computational costs of tasks have a uniform distribution
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in the range [MIN, MAX]. The communication cost between
a parent task and a child task is assumed to be proportional
to the computational cost of the child task with the parameter
C-COST heing the constant of proportionality.

Since finding optimal solutions takes too much time, we
used the following four yardsticks to compare our algorithm
against - (a) average amount of computation per processor
which ig a trivial lower bound (referred to as LB) for any
solution, (b) solution value for list scheduling heuristic with
communication constraini, (c) solution value for decreasing
fit heuristic, (d) solution value for Kopidakis' task assign-
ment algorithm(6]. In the rest of the section, we use L, Ls,
Lsand L, to denote respectively our load balancing algori-
thm, list scheduling, decreasing—fit heuristics and Kopidakis’
algorithm.

In our experiment, we started with 5 tasks per processor
and then went through 1000 generations. We obtained the
average objective function values for the heuristics under
consideration. The following tables respeciively indicate
how the performance of the heuristics vary with C-COST,
number of processors, variance of execution times, Initial
number of tasks per processor (No_tasks) and average ex-
ecution time of tasks.

As can be seen in <table 1>, L, and L, give good sol-
utions regardless of C-COST while L, performs better only

for very small values of C-COST when balancing workload
plays a more important role than reducing communication
costs. When C-COST is larger than 0.1 (which means that
comrnunication cost is more than 10% of computational cost),

L, and L, perform better than L, and L;. When the
distance hetween the two processors is relatively large, as
in meshes, L, has the advantage over L, because the
communication cost is constrained under a cerlain value
while workload is balanced.

With respect to sensitivity to number of processors, L,
our heuristic performs the hest in most of the cases as can
be seen in <Table 2>. This can be attributed in part to the
ability of the algorithm to keep the communication cost to
a minimum while retaining the opportunity to balance the
workload among the processors.

{Table 1> Solution values for different C-COST values

C-COsT LB Ly Ly Ly Ly
0.01 51.6 50.5 58.5 57.1 575
0.1 51.6 61.7 61.1 59.6 60.2
02 51.6 63.5 64.4 72.7 63.1
0.3 51.6 65.9 69.5 775 66.7
04 51.6 68.6 74.0 90.9 69.1
05 516 70.6 76.8 97.2 72.8
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(Table 2> Solution values for different numbers of processors

No.of Proc. LB L Ly Ly Ly
32 45,0 54.3 282 61.5 54.9
64 46.3 585 60.1 64.7 58.1
128 51.6 65.9 69.5 715 66.41
256 64.6 76.9 0.4 891 7.7
512 68.2 834 893 105.3 34.1

(Table 3> Solution values for different variances of execution

times
MIN-MAX LB L, L L L.
8-12 515 62.2 64.9 5.6 63.0
6-14 51.6 (2.7 65.2 758 62.2
4-16 51.6 65.9 69.5 774 66.7
2-18 51.7 86.6 70.1 77 66.8
0-20 517 683 71.8 78.9 68.1

With respect to varianice of execution times, we see that
L; is not much influenced while the objective function val-
ues obtained by L,, Ls and L, increase with large vanation
in execution times of tasks. But since L, keeps the commu-
nication cost small, the total cost is smaller than that of L,
or L. L, performs similarly as L,. The reason for smaller
communication cost is attributed in part to the fact that
communication cost for a task is proporiional to its execution
time and with wider variation in execution times, tasks wilh
heavy communication costs are not allowed to migrate too
far while tasks with light communication costs can migrate
further.

7 Gonclusions and Future Work

In this paper, we discussed a dvnamic load balancing pro-
blem that arises in mapping computations with tree-struc—
tured task graphs onto multiprocessor systems. We formul-
ated the objective funclion which includes both computation
cost and communication cost between tasks. The heuristic al-
gorithm we proposed in this paper tries to minimize the
maximurn computation time among the processors while
keeping the communication time under a certain Limit. In
addition to analyzing its complexity, we also experimentally
analyzed the accuracy of solutions provided by our heuristic
algorithm.

Our future work will be concerned with the more difficult
task of developing an efficient load balancing algorithm
which can be applied to arbitrary task graphs where commu-
nication can take place between any pair of tasks. Especially,
we are interested in developing load balancing algorithms

which are useful for massively parallel architectures.
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