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A Localized Multiquadric (MQ) Interpolation Method
on the Hyperbolic Plane

Hwa-Jin Park'

ABSTRACT

A new method for local control of arbitrary scattered data intcrpolation in the hyperbolic plane is developed in this paper. The issue associated
with local control is very critical in the interactive design field. Especially the suggested method in this paper could be effectively applied to
the mteractive shape modeling of genus—N objects, which are construcled on the hyperbolic plane. Since the ellects of the changed data affects
only the limited area around itself, it is more convenient [or end-users to design a genus-N object interactively. Therelore, by improving the
global interpolation on the hyperbolic plane where the genus—N object is constructed, this rescarch is aiming at the development and
implementation of the local interpolation on the hyperbolic plane, It is implemented using the following process. First, for localizing the
interpolating functions, the hyperbolic domain is tessellated into arbitrary triangle patches and the group of adjacent triangle patches of each
data point is defined as a sub-domain. On each sub-domain, a weight function is defined. Last, by blending of threc weight functions on the
overlapped triangles, local MQ interpolation is completed. Consequenily, it is compared with the global MQ interpolation using several sample

data and functions.

719IE : 510|H 22 M (hyperbolic plane), AEZH (local interpolation method), multiquadric 8f4=(multiquadric function), g%

g (tessellation)

1. Introduction

Many researchers have improved scattered data interpol-
alion methods in Euclidean plane. The problem of scattered
data Interpolation is to find a real valued multivariate fun-
ction interpolating a finite set of arbitrary located data points.
If we take bivariate functions as examples, they can he
defined in terms of input and output as follows :

Input : n data points (p,,/), p.€R? i=1,,n

¥ R A7E SRAAHHT 0004 AT Hde) 93 FADHG
t 259 AR AU Bevyoltus 2s
EER 2001 59 109, AARSRE 2001 109 109

Qutput : continuous function f: R®— R, inlerpolating the

given data points, that is,

)=/, i=1,n

Scattered data interpolation and approximation can be ap-
plied in many areas including mineral exploration, computer—
aided geometric design, image deformation, earth crustal mo-
verment and weather analysis. The survey paper [1, 8] by
Barnhill described many of these applications and methods
for solving the problemn. Several bivariate scattered data
interpolations have been tested and compared by Franke [8].
Among them tested by Franke that performed well in that
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comparison, Hardy's multiquadric method, the thin-plated
splines of Duchon, and the minimum norm network method
are included. Despite these well - performed results, there are
some negative aspects 1hal they are not local and they are
computationally expensive and unstable if the number of
data points is hig. Hence, the local control of scattered data
interpolation is developed using several different approaches.
While Shephard first suggested the inverse distance-weight-
ed method, Hardy[9][10] and Duchon[16] developed local
multiquac method and local thin plate method respectively,
which are the most widely used methods.

Recently, many researchers have been exploring the appli-
cable area for the hyperholic plane. Actually the hyperbolic
plane is not new to a mathematician, but is a new field for
data interpolation and applicable area in the real world. Such
application to the sculpture area is done first by Ferguson[3],
4 mathematician and also an artist. He suggested the method
of modeling the 3D object of N genus (N=1, -, #) over
the single patch. Several methods for modeling a genus N
object have been improved to enhance the smoothness and
the continuity of the objects, since then. Rockwood [4, 14]
showed the way of designing a genus N object interactively
from the given scattered data on the hyperbolic plane. Radial
basis functions over the hyperbolic plane such as multi-
quadric, thin plate splines are utilized to interpolate the
sampled data from the genus N object. But it embeds the
inconvenience in modeling, designing, and editing the sculp-
ture, which comes from global property of the function. To
eliminate such problems, a new method [or enhancing loca-
lity to the interpolating function on the hyperbolic plane has
been necessary. In this sense, this paper aims al the new
scattered data interpolation method providing the local con-
trol property on the hyperbolic plane. Since it is imple-
mented on the hyperbolic plane, the new suggested function
is working with the hyperbolic distance. For localizing the
interpolating functions, the hyperbolic domain is tessellated
into arbitrary triangle patches and divided into several
sub—domains. A weight function on each region is defined
and blended on the overlapping triangles.

This paper is organized as follows. Section 2 describes the
preliminary concepts of the hyperhbolic geometry including
distance, angle, etc. Several methods of local scattered data
interpolation on Euclidean plane are explained in section 3.
The next section shows a local scattered data interpolation
based on hybrid bezier patches on the hvperbolic plane along
with the analysis of the results. Finally, conclusion is fol-

lowing in the section 5.

2. Brief Background on Hyperbolic Geometry

A brief summary of hyperbolic geometry is reviewed. The
hyperbolic geometry originates from the hyperboloid model.
As it is shown in (Figure 2.1), the hyperboloid model of two
sheets can be defined by the equation xf—xf—xf =1 in the
homogeneous Cartesian coordinates x), %2, 5. Taking either
gheet from the hyperhola and mapping it using a central
projection into the plane x,=1 come up with the hyperbolic
unit disc whose radius is 1. The hyperboloid model and the
hyperbolic disc are shown in (Figure 2.1). A poinl p on the
upper sheet is mapping to p’in the disc, which is represented
as the hyperbelic planc I7% This induces the hyperbolic
geometry on H°%, a non-Fuclidean geometry. More details
are available in [12, 13].

(Figure 2.1) Hyperboloid model

In general, the hyperbolic geometry is different from Eu-
clidean geometry in defining the basic elements. Points in
the hyperbolic geometry correspond with points of the unit
disc, while lines in the hyperbolic geometry are arcs of cir-
cles in the unit disc that are perpendicular to the disc boun-
dary at their endpoints. For an example, arc (PQ) in Eucli-
dean geometry in (Figure 2.2) is considered as the line seg-
ment PQ in the hyperbolic geometry. Bul the diameters of
the disc are straight lines. The hyperbolic angle between two
hyperbolic lines (arcs) which intersect at a point is the
ordinary Euclidean angle between their tangents. T'wo points
can be said to be collinear if and only if they are placed inside
the unit disc D (=H?) and on the circle which meets the
boundary at right angles. Two angles in the hyperbolic
geometry can be equal if and only if they are equal in
Euclidean geometry. Using two points M and N on the
boundary of unit disc D which is called ‘points at oo, it is
possible to define the distance between two points P and



€ in the hyperbolic geometry. Refer to (Figure 2.2). With
an assumplion thatl the radius of the disc is 1, the hyperbolic
distance dy between points P and @ is

de(PN)dg(QM)

= Lljog
@5 (PR)= 5 |log o 2 (ov) .

where P and @ are any two points in the disc and M and
N are the points on the boundary of D and on the line (arc)
through P and @ where N is closest to P and M is closest
to @. The notation dx(PQ) means the Euclidean distance
between P and @, The hyperbolic distance between P and
@ increases without a limit as P or & approaches the disc

boundary.

(Figure 2.2) The hyperbolic distance between P and Q

The advantage of the unit disc D is that we can cover
the whole plane with a mosaic of almost all regular polygons
without overlapping any polygons. We define a regular tes-
sellation of the hyperbolic plane as a covering of the entire
plane by non-overlapping regular polygons which meet only
along complete edges, or al vertices. All polygons in any
tessellation must have the same number of sides. A regular
tessellation with q regular p—sided polygons (p-gons) meet-
ing at each verlex is denoted by {p,q}.

Since the sum of angles in a triangle in Euclidean plane
is equal to =, we have

2r 27
==,
b2 q
Hence,
2 2
1-===.
b2 q
Thus, pg—2¢—2p=0
(p—2)(¢g—2) =4

We can have three real solutions from this equation, so
three regular tessellations in the Euclidean plane, {4, 4}, {6,
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3}, and {3, 6}, are possible. In the hyperbolic plane, most
regular tessellations satisfying

(p—2)(¢—20>4

are possible, since the angular sum of any triangle is less
than 7z Therefore, there are an infinite number of possible
regular tessellations on the hyperbolic plane. Detailed expla—
nations on the regular tessellation in the hyperbolic plane
can be found in [5].

The marked simple polygon of a genus N objecl via cuts,
called the fundamental polygon, can be mapped to the
hyperbolic disc and used for regular tessellation by rotation
and translation. A translation in H? is a fractional linear
transformation (Mdbius transformation), which reflects itself
across an arc. It is given by f(2) = (az+8)/(cz+d), with
ad— de = 1. Each translation generates a replicalion of the
polvgon, called a period. The regular tesscllation with q
regular p-sided polygons (p-gons), which meet at each
verlex, {p, q}, forms a group denoted by T, .. If p is equal
to q, I, can be used instead of I, .

This research adopted the Poincaré model of the hyper-
holic disc in which the edges of the polygon are a special
set of 4n equivalent length circular arcs and are arranged
Lo form the sides of a regular figure, which is symmetric
to the origin. The Poincaré model has a symmetric
representation. (Figure 2.3) shows the {8, 8} tessellation of
the hyvperholic plane.

(Figure 2.3) {8, 8} tessellation of the hyperbolic plane

3. Localized Scattered Data Interpolation on Euclidean
Plane

3.1 Hardy's global muttiquadric (MQJ interpolation

MQ interpolation is one of the radial basis [unctions, in
which the term ‘radial’ is derived from the property that
values of the basis function depend only on the distance from
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the data point. The coefficients of the basis function is
determined by the following form,

N m
Ap= ,=21 @, B (d(p, )+ b)), bulp)= ,=21 Bibi(2),

where the basis function B:(d(p.p;)) are positive radial
function, i.e., functions of the distance d(p, p;) of the point
= (x, ) to the interpolation points »; = (x; v;) in the para-
meter space, and p; = (x;, v;) is a monomial function of de-
gree at most m. The unknown coefficients @, and 4, are

obtained from the interpolating conditions,

m side conditions

M=

abp:) =0, j=1,-.m

1

and also by solving the resulting system of linear equations.
The MQ method has the following basis function

n
2

B(r)=(rE+RY *, u+0,

where R is a positive constant. Hardy set the choice of # to
be equal to 1, which corresponds to the upper part of a
hyperboloid of rotation. The best choice of r is often the
distance between p and 2,

d(p, p) =V (x—x,)+ (y—,)°.

With the well-selected parameters r and R, the MQ method
generates a good interpolation which is relatively simple to
implement, and leads to neat systems of equations for the
moderate size of data sets. In addition, the resulting surfaces

are C™. More details are in [11].

32 Localized multiquadric (MQ) interpolation
The basic technicque used in Franke [7] for localizing a
global interpolation method uses the following process. First
define local domain regions S,,7=1,, K such that the union
of these regions contains the domain of interest for evalua-
ting the final interpolation. Second, define weight functions
Wi (x,v) such that

K
2, Wi(x,9)=1 for all (x,3) inside of S;

W (x,»)=0 for (x,3) outside of S,

~
—

Third, define local interpolation @;(x, ¥) such that @,(x;, v;)
=7 for all i={i: (x,,v,)€S;}. Finally define the localized

interpolation to be
K
F(x,v)= Fz‘i Wix,v)@Q,(x,y)

Since the weight functions sum Lo one, we have that F (x;,
v =1 for i=1,- n.

Therefore the interpolation is local in the sense that F (x, v)
only depends on data points (x;,v, f;) for ieJ . ,), where
Jiey=171 (x,¥)=8}. Since the weight functions have com-
pact support, the localized interpolation can be evaluated as

K

Flx,y)= ]_E%” W(x, v)Q,(x, )
Originally, Franke chose rectangles as the local region by
overlapping the domain with a rectangular grid and used
standard C' piecewise bicuhic Hermite basis function as the
weight functions. For local interpolation @,(x,»), he used
thin plate spline (TPS) function. It is quite satisfactory under
the assumption that the given sample data are somewhat
uniformly distributed in the domain. Foley in [15] suggested
a weight function over the overlapping trangular domain
using hybrid bezier triangle patches, which is appropriate
in the situation that the domain is tessellated into arbitral
triangle patches and in the situation that data in some area

are very dense and some are sparse. For this research,

Faoley’s method is chosen to tessellate the hyperholic plane
not because of the sampled data but because of the domain.
The reason will be explained in section 4.

4, local Multiquadric(MQ) Interpolating Function on the
Hyperbolic Disc.

4.1 Local MultiquadrictMQ) function using hybrid bezier tri-
angle paich on the hyperbolic Disc

The local MQ interpolating function mentioned in section
3 is based on the domain tessellated with the rectangles.
However, it is nol quite fit to the hyperbolic plane, which
1s not tessellated with rectangle-based grids, i.e. (4,4). The-
refore this research adopts the triangle tessellation, espec-
ially, Delaunay {dangulation, which avoids long and skinny
triangles. Over these {riangles, a sub domain S, is defined
as a set of neighboring triangles of vertex V;. The weighting

function on cach of subdomain is generated. There are se—



veral weight functions generated over a triangle in Euclidean
such as Clough-Tocher triangles, quintic patch in Bamhill
and Farin, Foley's hybrid bezier trangle patch. See [2, 15]
for more details. The comparisons among them are out of
main focus and could be future works. According to [15],
however, the weight function over Foley's hybrid bezier
triangle domain requires the smallest number of control data
points and produces qualitative results. Therefore, the hybrid
bezier triangle employing hyperbolic distance on the hyper-
bolic plane is developed [or a smooth interpolation of locality.

First tessellate triangle domain S,,/=1, -, K satis{ving

whole domain D= $,1JS,--{S;. Each S; dominates all
neighboring triangles of vertex V;. (Figure 4.1) shows an

example of domain S;.

(Figure 4.1) exampie of domain S,

Assuming that on each triangle T ,; whose vertices are V,,
Vv, and V, we have 12 control points &%, b4y, 8%, b=
b where [I1=3 and |7]%(1,1, 1), the hybrid cubic Bezier

triangle palch is defined as

H(U)= H?:S 5By (U)

where
3!
i1kl

by = By ()= wo(U) b+ wy (U) bin+we (U) by

Bi(U)y=B ()= whuiul,
and

U Up
Ut + Uyl + Uy U

wi(U)= JivjFk

A collection of data #(p;)= f,in R* for i=1,--, n onthe hy-

perbolic disc D are defined arbitrarily. In order to interpolate
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this set of data, a local MQ interpolating function is extended
directly to the hyperbolic disc by replacing the Euclidean
distance, dg, with the hyperbolic distance, 2. Applying the
multiquadric function to each region S, in the hyperbolic

plane, we have

m

FB=Ff= 23 aB,(dy(0.0.))

=1

Bi(dy(p,$,))=V dy(p, )+ R*

for (x;,¥)€8;,i=1,-,m

where m is the number of data in subdoman S; and the
hyperbolic distance dgy is defined in terms of Euclidean

distance dg,

de(oN)dp(d, M)

=Liog, 2208
dulp.p)="g|log e A Ny |

In order to generate the multiquadric function on the
hyperbolic plane, we build the linear gystem

where

M=
Bildy(py,01)) Byldu(pr,02)) By(dy(py, 0a))
Bi(dy(p,,0)) Baldu(be, p2)) Baldplps,p3)
B(dy(pg, 01)) Bylde(ps, p2)) Byldi(py,09) !

By(dy (D), b))
BN(de(pJ ) 17,,,))
By(dg(pa tn)) |,

Bi{dy(pp.01)) Byldu(pm,02)) Bildg(bp, 1)) By(dy(tm, bm))

the unknown coefficient e

a=[£¥1 &y &y “‘am]Ta
and the associated real function values
f=[f1 J2 f3 ‘"fm]T .

As the number of data m is larger, the solution vector a
of the linear system can be obtained by using a method for
the linear equation solving systerm such as LU decomposition
method, iterative improvement of a solution to a linear
equations, or singular value decomposition. Sirce each me-
thod provides its own advantages, choice of appropriate lin-
ear equation solving system depends on applications.
Better understanding of hyperholic distance, the basis fun-
ction of the multiquadric function on the hyperbolic plane
is visualized. The geometry of the basis function B; using
the hyperbolic distance is illustrated in (Figure 4.2). The curve
labeled “Euclidean distance” indicates the basis function B;
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using Euclidean distance and the one labeled “hyperbolic
distance” does B, using the hyperbolic distance. Note that

the similarity around the center point and the difference be-

tween them as |x| increases.

~ hyperholic distance

»

" Euclidean distance

*

(Figure 4.2) Geometry of MQ Basis function in the hyperbolic
space

For efficient implementation with the given sample data
on the arbitrary triangulated domain as in (Figure 4.1), there
are several imitial steps for calculating the local interpolating
function on the hyperbolic plane. First, generate the informa-
tion on interior edge and boundary edge in the whole domain,
g0 that their initial value can be set differently. Each triangle
has its own list that contains all sample data in it and each
region has the information of its member triangles. This
structure makes it easier to find a region where a given data
point 15 included.

Next stage computes the necessary coefficients for each
local interpolation @, that interpolates the sample data points
in the region S,. The linear system of equations is solved
using LU decomposition method. Once this information is
set up, the final stage involves evaluating the localized in-
lerpolation F(x,v) at an arbitrary point (x, ) in the do-
main. In order to find the triangle T, that contains (x,»),
compute the barycentric coordinates (uy, %, us) of (x, ¥)
with respect to V,, V,,and, V.. Finally the localized inter-

polation can be obtained as

Flx,v)= Wiz, v)Qi(x,y)+ Wix, v)Q;(x. »)
+ W (x, )@ (x, )

4.2 Results and Comparisons

The localized MQ function on the hyperbolic disc whose
radius is 1 is tested to show how it is working and to observe
the difference hetween global and local MQ functions. For
cormparisons, several test functions are selected to generate
the function value assoclated with arbitrary selected data
points. With the given data points and their associate func-
tion values, global and local MQ interpolations in the

hyperbolic plane are generated and compared. The test
functions are excerpted from Frankey [6], which are as
follows.

Al y)= 0.75expl —0.25(92—2)2—0.25(9y— 2)%]

(9x+1)¢  9y+1

49 T 10 (4.1)
+0.5exp[ —0.25(9x—7)¢—0.25(9y— 2]
—0.2exp[ — (9x—4)*— (9y—7)?1]

+0.75exp| —

[tarh(9y—9x) +1]

fHle,y)= 3 (4.2)
1.25+cos(5.4y)
== s 4:
fiCx, ) 6+ 6(3r—1)° (43)

For qualitative comparisons, four arbitrary sample data
sets with the number of data points n, where n = 110, 90,
and 80, are provided. They are shown in (Figure 4.3) (a).
(Figure 4.4) (a), (Figure 4.5) (a), and (Figure 4.6) (a). Ac-
tually the data set (n=90) of (Figure 4.4) (a) is obtained
from the data set (n =110) of (Figure 4.3) (a) by eliminating
20 data points arbitrarily. The data set (n=80) in (Figure
45) (a) is obtained from the data set (n=90) in the same
way. But the data set (n=80) in (Figure 4.6) (a) is another
arbitrary sampled data set and is not relevant with the data
sets of (Figure 4.3) thru (Figure 4.5).

With three test functions and four sampled data sets, MQ
interpolations in several acpects are tested and compared.
They are global vs. local, a large data set vs. a reduced data
set, and two different data sets. For comparisons between
global and local interpolation, (Figure 4.3) thru (Figure 4.6)
show global and local MQ interpolating [unctions over the
arbitrary sampled data sets with n=110, 90, 80, and &0
respectively. Global MQ functions of using Eq. (4.1) are
shown in each (b) from (Figure 4.3) thru (Figure 4.6) while
local MQ functions are shown in each (c). Each (d) and each
(e) show global and local MQ functions of using Eq. (4.2).
Using the same method, (F) and (g) from (Figure 4.3) thru
(Figure 4.6) indicatc global and local M@ functions of using
Eq.(4.3). In order to con’_lparc the similarity between them,
the dilference of function value at a certain data point is

summed up and averaged. It can he written as follows.

avr (diff) = E | fo— Ful/n,

where fg, is the global interpolating function value at ¢*

data point, 7 is the local interpolating function value at the

same data point, and n is the number of data points.
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(¢) Local MQ function (using Eq.
4.1)
avr(difl) between (b)
and (¢) is 0.009733

(e) Local MQ function (using Eaq.

(4.2))
avr(dill) between (d)
and (e) is 0.003722

(g) Tocal MQ function (using Eq,

(4.3
avr(diff) between ([)
and (g) is 0.004019

(Figure 4.3) Comparisons of global and local MQ functions
over n = 110 sample data in the hyperbolic

plane
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avr(diff) between (f)
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(g) Tocal MQ function (using Lq.

(Figure 4.4) Comparisons of glabal and local MQ functions
over n = 90 sample data in the hyperbalic
plane
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(Figure 4.5) Comparisons of global and local MQ functions
over n = 80 sample data In the hyperbolic
plane

KA
i
[alsannsat % pal
@'fgggs;m

S N
va¥a7. RSN
ATy SRS
LS
i
wA

N

(¢) Local MQ function (using Eq.
(4.1)) avr(diff) = 0.010780

(h) Global MQ function
(using Eq. (4.1))

e

i AT AN A ATa TATAY

:

Jodeh]
P S 2

AV VAV ALY R RV
AT AV N A AT L

U5l ik

.

A

N

N
A
T
R
Uil
£y,
o

"

)

N

£

T,

TR T Yt o
o g e L £ -
.
=
Wk
i

3

i,

(d) Global MQ function
(using Eq. (4.2))

(e) Local M@ function (using Eq.
(4.2)) avr(dif) = 0.003237

ANy s s,
‘gﬂ'&ﬁnmuv.effs?g’.’-,%iﬁ;i
ittty DOVEEEELETRD,

AT
‘vfgl‘.l*ﬁnw#g{‘?/#

A T e,
A A 2 At ) ‘ 5
‘%“q:ﬂ:gm{; ! s ;’} o _‘gf‘ai:#‘qﬂﬁ%{:}j@ﬁg&;ﬁi
.‘huv‘,: S, 5' A D 'N‘I“'l;‘ g;;g;;‘ﬁ((a‘.
5&3‘3}}'«»‘* 3 v : ,; '6;.;‘ Ty 14 2
et Ay A iy Ak vt e e
2 e & S A i Vg 1o ol g g
I e Y e i g, g e e R g0 g A
e A T g, VY e I 2 e Rt B Al B g, e 4
SRRSO IR e R R T
ity e I r gy Vi e S Ay
Y Y Ty T Y At Il‘(.hd.ﬂﬂ‘ I AVAY, iy
e ¥ ey Y v
A ARy
LTS5
4§§“.‘AYWAYNAV#I¢‘“§‘.-

EANTS

(f) Global MQ function
(using Eq. (4.3))

(g) Local MQ function (using Eq.
(4.3)) avr(diff) = 0.002039

(Figure 4.6) Comparisons of global and local MQ functions
over n = 80 sample data in the hyperbolic
plane



Generally MQ interpolating functions in the hyperholic
space interpolates the given data points smoothly. As com-
pared between global and local MQ functions, global MQ
functlion generates stable and smooth interpolation over the
overall domain while local MQ function generates stable in
most of the area but increases more rapidly than global one.
The result comes from the fact that the number of data
points within each region in local MQ function is much
smaller than that in global function. This result is very
natural because the hyperbolic distance increases exponen-
tially as it goes toward the infinity line i.e. boundary of the
circle.

For comparisons, local MQ functions with a large data set
vs. with a reduced data set, (Figure 4.3) thru (Figure 4.5)
are utilized. The MQ interpolation using Eq. (4.1) over data
set (n=110) in (Figure 4.3) (¢) is similar to that of data set
(n =90) of (Figure 4.4) (¢) while it is different from that of
data set (n=80) of (Figure 45) (c). Same results are
generated in the case of Eq. (4.2) and Eq. (4.3) which are
depicted in (Figure 4.3) (e) thru (Figure 45) (e) and in
(Figure 4.3) (g) thru (Figure 4.5) (g). Such results show that
MQ interpolation is rougher as the data size is getting
smaller. In addition, they show that local MQ interpolation
is stable when the size of data set is greater than a certain
number. Therefore it would be more efficient if the optimal
data size would be known. However, it ig difficult to find
the number of optimal data size since it depends on appli-
cations.

Last, as compared between two different data sets, local
MQ functions of using same functions Eq. (4.1), Eq. (4.2),
and Eq. (4.3) over different data sets with n = 80 in (Figure
45) (a) and (Figure 4.6) (a), are generated and shown in
(c), (&), and (g) of (Figure 45) and (Figure 4.6). They ge-
nerate close results around central part but different at the
boundary of the domain.

In conclusion, three aspects from several test functions
are compared, which are global vs. local, a large data set
vs. a reduced data set, and two different data sets. Even
though some local MQ interpolations are looked different at
the boundary of the circle, the results are generally quite
satisfactory because the global and the local interpolations
over fundamental domain-the polygon centered to the ori-
ginal point-generate very close results. Because the results
between global and local interpolation are close, usage of
local interpolation in the field of interactive design provides
more convenient and efficient way than that of global one.
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Therefore the corresponding area in the fundamental poly-
gon will be mapped onto the object space to design a 3D
genus N object. Applying local MQ interpolation into de-
signing of genus N object is the next research work. The
results and analyses on this paper can be contributed as a
part of the research on interactive designing 3D genus N
model. Therefore the local MQ function in the hyperbolic
space provides us a strong advantage for the better way of
shape control.

5. Conclusion

This research presents a new method for local interpola-
tion of a set of scattered data on the hyperbolic disc. MQ
function is localized through the process of triangulating the
hyperbolic plane, evaluating the weighting functions on each
region, and blending them on overlapped triangles. Over ar-
bitral trangle tessellation, the local M@ function in the
hvperbolic plane applying the hyperbolic distance is working
well and effectively. The results of this research are quite
safisfactory since the shape is qualitatively recognized from
the set of arbitrary scattered data. The ultimate goal of this
research is to generate a local interpolation on the hyperbolic
disc and eventually to make it possible to locally control a
3D object interactively over a single domain. In terms of this
view, the result is considered to be the first step toward the
goal.

As the future works, this method will be utilized to design
a 3D object with infinite continuity over a single domain,
which will provide a more efficient design method. On the
other hand, a subdivision scheme should be integrated into
the design of an object. Therefore, further study is needed
for finding a full subdivision on the hyperholic disc.
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