=& 01-26-11A-18

FFEA 3| =8=] '01-11 Vol.26 No.11A

The Mapping Method for Parallel Processing of SAR Data

In-Pyo Hong*, Jae-Woo Joo*, Han-Kyu Park** Regular Members

ABSTRACT

It is essential design process to analyze processing method and set out top level HW configuration using main

parameters before implementation of the SAR processor. This paper identifies the impact of the IO and algorithm
structure upon the parallel processing to be assessed and suggests the practical mapping method for parallel

processing to the SAR data. Also, simulation is performed to the E-SAR processor to examine the usefulness of

the method, and the results are analyzed and discussed.

I. Introduction

Synthetic Aperture Radar(SAR) can provide all
weather, high-resolution images of the earth over

a wide area!!

. SAR data represent an important
source of information for a large variety of
scientists around the world”. The generation of
SAR images from the raw radar data is compu-
tationally demanding, and depends on the radar
platform and the chosen processing parameters”.

The SAR processor is the primary image-
generating component of the SAR system. A
major difficulty in developing a SAR processor
for a high resolution and large swath spaceborne
imaging sensor is associated with the requirement
for a very large amount of data memory in order
to access the total information needed to generate
a synthetic aperture and the very high speed
arithmetic computation requirement. Work during
initial design stage set out the processing
algorithm definitions, performance analysis, and
architecture of the SAR processor. These defini-
tions and results constitute the starting point of
this paper.

It is critical design process to analyze the
mapping method for parallel processing of the
SAR data before implementation of the SAR
processor because the generation of SAR imagery

involves an extensive amount of computation and
data manipulation for the simple reason that the
formation of each pixel involves the combination
of data from many thousands of echoes'.

This paper has identified the impact of the
Input and Output(d/O) and algorithm structure
upon parallel processing methods to be assessed.
This assessment has led to a rationale which
confirms the top level hardware(HW) configura-
tion, defines the software(SW) and HW mapping
method and which will be able to leads to a
definition of the criteria against which a suitable
HW system may be selected. The impact of the
SAR processor algorithms upon the mapping
method for parallel processing has been taken into
account in this paper.

Also, it is assumed a spaceborne SAR
processor for simulation and called Experimental
-SAR(E-SAR) processor. In section II, the echo
processing flow through the E-SAR processor and
the parameter values based on SAR processor
design criteria are presented.

I. E-SAR Processor

The Range-Doppler algorithm is selected for
E-SAR processing because Range-Doppler algo-
rithms are built around the fundamental benefits
of the Range- Doppler domain”. Fig. 1 illustrates

*)zl ehed P(hip7777 @hanmail net)
=29 30 0101150524, AF4dA}: 2001 5Y 24

** At Ayl

1963

F=-5A183] =84 0111 Vol.26 No.11

the processing flow of it.

Fig. 2 shows functional structure of the E-SAR
processor and illustrates that it can be conve-
niently subdivided into three functional segments.
The Data Assembly Processor(DAP) takes as its
input a stream of echo data records from the
synchronized data. It checks the state of
completion of the data in terms of its status as a
sequence of radar echoes, and extracts and
records the echo, replica, sample, and auxiliary
radar data.

[Range compression < relzjr‘;iecc
function

Range Cell Migration Azimuth
Correction(RCMC) & reference
Azimuth compression function
Azimuth & range Deskew
resample coefficient

Fig. 1 The processing flow of the E-SAR
processor

The completed echo data is passed to the Main
Processor(MP) and the auxiliary data passed to
the Support Processor(SP) where the processing
parameters for the MP are derived. The SP
performs those calculations that need to look at
information on a scene-wide basis. The results are
broken down into data sets applicable to inde-
pendent data blocks. Each data block can then be
processed without reference to the processing of
any other block. This allows the MP, which
handles most of the processing load, to be
efficiently implemented on a parallel array
processor. The SP is organized (by algorithm type
and by SW unit) into two stages. One derives
scene-wide processing parameters (from the data
extracted by the DAP), the other derives the
block-wide processing parameters required by the
MP enabling it to generate and organize the

1964

image data according to the image quality
requirements.

The parameters and requirements of the E-SAR
processor used for simulation are shown at below
Table 1.

Data MP SAR
buffer ﬂ>ﬁ§=

processing
parameters
SP
scene-wide block-wide
parameters parameters

Fig. 2 Functional structure of the E-SAR processor

Table 1. The parameters and requirements of the E-

SAR processor
Contents Values Unit Remark

FLOP per 600 FLOP Float'u_lg point
sample operations
Required g
processing rate 2.3x10° | FLOP/sec
The number of 23
CPU
The mean data for Single Look
input rate 3 Mbytes/sec Detected(SLD)
The mean data
output rate 20 Mbytes/sec |for SLD
The size of 4 4 The number of
a scene 10" x10 resolution cells

. Mapping Method for Parallel
Processing & Simulation

3.1 Mapping Concept

The basic vnit of SAR data processing is a
scene. The types of processing tasks involved in
SAR processor processing reveal the parallel
processing concepts best suited to the situation.
Top level tasks can be categorized as follows:
tasks associated with scene-wide tasks associated
with extracting and deriving data and processing

i | The Mapping Method for Parallel Processing of SAR Data

parameters which apply to the entire scene,
block-wide tasks associated with deriving the
parameters for processing discrete data blocks
independently of one another, sample-by-sample
tasks involved in
processing independent data blocks to generate the
image output, Man Machine Interface(MMI) tasks,
and IfO tasks. In order to process an entire scene

computationally intensive

the scene-wide, block-wide, and sample-by-sample
tasks must be implemented in sequence.

It has been assumed that we should achieve an
effective FLOP rate of about 2.3x10° FLOP/sec
in the sample-by-sample tasks and that in practice
this would require about 23 CPU’s working
simultaneously. In this section we analyze the
impact of IfO requirements and algorithm structure
upon the parallel processing in order to seek
opportunities for sub-division of the main proc-
essing task into independent parallel paths.

3.2 Impact of I/O and Algorithm
Structure upon Parallel
Processing

The mean data input rate is of the order of 3

Mbyte/sec and mean data output rate for an SLD
product is of the order of 20 Mbyte/sec. The HW
must provide sufficient disc controllers to permit
aggregate /O rates of 23 Mbyte/sec continuously
while a scene is being processed in order to
achieve the required throughput rate. Non-blocking
I/O would be an advantage. The following
features of the processing problem influence the
processor configuration :

®Data /O must be smooth, line-by-line read

and write.

®Input data will be in echo window sequence.

oOutput data will be in image line sequence.

eWith the Range-Doppler algorithm we can
compress in range line-by-line order.

eWith the algorithm block

processing the azimuth compression is done in

Range-Doppler

blocks of compressed range lines. It can only be
initiated when sufficient range compressed lines
have been accumulated.

®Therefore we require a RAM buffer in which

range compressed data can be accumulated before
azimuth compression can be initiated.

®Azimuth compression tasks take place on data
blocks of along track extent equal to the range
block dimension and of a different across track
width.

®FEach block can be processed independently
with its own parameters,

®The output data from azimuth de-skew comes
as incomplete range line segments as each block
is processed (see Fig. 3).

®The output achieved data rate to disc would
be lower for pseudo-random writing of range line
segments as they are ready than for sequential
output of complete segments.

Therefore to achieve the pseudo-continuous
output write to disc we require an image assem-
bly RAM buffer in which to accumulate output
range line segments. Complete, in sequence, range
lines would be written from this buffer to disc as
a rolling operation.

----: Incomplete range line
—— : Complete range line

Azimuth block

Azimuth block

Azimuth block

Scene width

Fig. 3 Incomplete range lines from azimuth block
processing

With all these features in mind, it is clear that
the structure of the Range-Doppler algorithm in
conjunction with making best use of I/O control-
ler facilities indicates a requirement for main
processing SW using two primary RAM buffers
and two I/O buffers. These buffers can act as
convenient multiple CPU system data transfer
interfaces. Their position in the processing
sequence therefore shapes the allocation of tasks
to CPU’s. The SW mapping must also be

designed to respect these buffer and interface

1965

= EA18H3) 2% 01-11 Vol.26 No.11

positions.

Multiple CPU processing opportunities arise in
at least two dimensions(see Fig. 4) :

®Range and azimuth processing may be
paralleled using the corner turning bufferlsn(’], ctb,
as an inter-process data interface.

®Across track sub-swaths can be defined since
independent block processing is possible. Within
sub-swaths the cth and iab can be partitioned
across track allowing CPU’s to work indepen-

dently within sub-swaths.

sustained line-by-line input

{ echo line input buffer

range
compression

at least azimuth

FFT length

comner turning buffer

(cth) lines along track
azimuth
compression
image assembly buffer 4 determined by
(iab) extent of skew
image
assembly

| image line output buffer]

v

sustained line-by-line output

Fig. 4 Main processing primary RAM data
buffers

3.3 The Principles of Multiple CPU
Processing

The most efficient method is always to have
each CPU executing code which operates
independently on locally partitioned data. The SW
design must be such that data transfer between
CPU’s is minimized. This has the consequence
that as we add more processors the overall
processing rate will increase in proportion to the
total number of CPU’s. Array processor
architectures also support memory sharing by way
of physical memory accessible to a number of
CPU’s. Whatever multiprocessor structure is
chosen, the SW structure must reflect it by
providing independently executable tasks at

1966

suitable points in the sequence. In other words
the SW must be such that many copies of the
same executable code can be spawned to run
independently with their own parameters and data.
In the case of an array processor each process
can be directly associated with a CPU and its
local RAM.

A process running on a CPU is able to
free-run once initiated until its end point. Only
occasional synchronization operations are required
to co-ordinate memory sharing and data transfer
& access operations. These inter-process communi-
cations are supported by the array processor
operating system. The SW structure requires
control layers to initiate and control the process
flow.

3.4 Parallel Processing Method

A wide range of multiple CPU task config-
urations can be devised”. Some methods illus-
trating the principles are outlined in the following
sub-sections. In each method advantage is taken
of the opportunities for sub-division into indepen-
dent tasks provided by the algorithm structure and
by the echo data structure.

3.4.1 Method 1

The data is divided into independent sub-
swaths. The comer turning buffer is partitioned
into sub-swaths. Input communication is via the
input line buffer. The image assembly buffer is
common and accessed by all sub-swath proc-
essors. Each sub-swath uses 1 CPU for range and
azimuth compression as a single process. Fig. 5
depicts the processing sequence for the four
sub-swaths.

The penalties of this method are that, between
sub-swaths : raw data must overlap by the range
reference function length, range compressed data
must overlap by range cell migration curvature
allowance plus the range interpolator length.

Worthwhile gain in data processing rate by
increasing the number of sub-swaths (each
processed by one CPU) is limited to about 8
sub-swaths, since for a given echo line length the

% | The Mapping Method for Parallel Processing of SAR Data

greater the number of sub-swaths, the greater the
proportion of range data overlap. With more than
8 sub-swaths adding more CPU’s gives a
diminishing return in terms of processing speed.

I
O 1bl b2
I bl b2
4 ss4, 1bl ss4, 12 !
i
cru | 3 ss3, bl ss3, b2 | |
number | [s, b1 552, b2
1 ssl, rbl ssl, b2 !
|

processing time

ss=sub-swath, rb=range block

Fig. b Parallel processing in four sub-swaths

3.4.2 Method 2
This method adds potential for speed enhance-
ment over method 1 by sub-dividing the process-
ing of each sub-swath between range and azimuth
compression tasks. The data and tasks are again
partitioned by sub-swath. Within each sub-swath 1
CPU is dedicated to range compression and
another is dedicated to azimuth processing
simultaneously. Data from range compression is
pipelined to the azimuth processors® via a
partitioned corner turning buffer’™, as illustrated in
Fig. 4.

The same penalties and limitations of multiple
sub-swath processing apply as applied to method
1. It is clear from the idea illustrated in Fig. 6
that the highest pipeline efficiency is achieved if
the task durations are balanced between range and
azimuth processing. In fact the processing load
imposed by range tasks is generally significantly
lower than for azimuth leading to the range
processors being be idle for significant periods of
time. This method certainly increases processing
speed by doubling the number of CPU’s operating
in each swath (for at least some of the time) but
generally is not optimally efficient. In practice
optimal efficiency may be less important than the
gain in speed achieved.

Note also that in this method the SW structure
must be different from that required in method 1
in that separate calls to range and azimuth
processes must be available, thus the HW
mapping influences the SW structure. Inter-process
communication is via the partitioned ctb and iab
data buffers.

8 | ss4, 1b(m) ssd, tb(n+1)

7 | ss3, tb(n) ’,"j’,' ss3, rb(n+1)

6 | ss2, i) ss2, tb(n+1)

cpu I | ssl. tb(m ‘,"","",'I,’/' ssl. rb(n+1)
bt ssa, sty [/77 | st vy
3 | ss3, tb(n+1) ss3, tb(n+2)

2 | ss2, th(n+1) ':/'I’ ss2, tb(n+2)

1 [sst. thin+1) l ssl, rb(n+2)

processing time

Fig. 6 Parallel processing in four sub-swaths

3.4.3 Method 3

This method is a further refinement of the
ideas in method 2. In principle, the range and
azimuth compression tasks are further subdivided
among a greater number of CPU’s :

®Data and tasks are partitioned by sub-swath.

®Range and azimuth tasks are separate
(pipe-lined).
®In range the data and tasks are further

subdivided into groups (along track) of range
lines with 1 CPU dedicated to a sub-aperture of
range lines.

®In azimuth, within each sub-swath, each CPU
is dedicated to a smaller group of azimuth blocks
than is associated with the sub-swath as a whole.

Thus at any time, once the processes are in
dynamic equilibrium (with non blocking I/O),
within a sub-swath the range compression CPU’s
work simultaneously on data from range block
n+l in a pipe-line with the azimuth compression
CPU’s which are working on data from range
block n. sub-swaths are processed in parallel. Fig.

1967

Pt EA18H3]=F] *01-11 Vol.26 No.ll

7 illustrates this method.

This method allows us to enhance efficiency by
adjusting the proportion of CPU’s dedicated to
range processing in relation to those doing
azimuth processing so that pipelining leads to
shorter idle periods. It also allows us to use of a
number of CPU’s greater than 2 X(number of
sub-swaths).

There is an additional penalty introduced by the
task subdivision in range: within a sub-swath the
across track interpolation overlap must be handled
by either processing the overlap data twice or by
exchanging data between CPU’s or by sharing
memory between CPU’s within the group. Each
of these alternatives adds a little time overhead.

CPU
number
21,22,23,24| ss4, tb(n) , ss4, tb(n+1) r--
17,18,19,20 ss3, rb(n) ’- ss3, rb(n+1) ~
13,14,15,16| ss2, tb{n) ”2--} ss2, rb(n+1) EE;{-
9,10,11,12 | ssl. rb(n) ssl. thin+1) x
738 ssd. rb(n+1) JEE E ss4, rb(n+2) J:EEE
5,6 ss3, tb(n+1) ‘JE E ss3, th(n+2) j;i
34 ss2, rb(n+1) - E ss2, rb(n+2) ":é
1,2 ssl. rb(n+N ™"~ L ssl, rb(n+2) -t

processing time

Fig. 7 Range-azimuth pipeline in subdivided sub-
swaths

IV. The Result and Discussion

Scene-wide and block-wide tasks are executed
in sequence and depend upon the data assembly
tasks having been executed first. Whether or not
the block-wide tasks are grouped together with
the scene-wide tasks or are placed in the main
sample-by-sample processing is a question of the
balance between the volume of block-wide data
output and processing speed. Optimal balance and
operational speed can be achieved by grouping
the block-wide tasks with the scene-wide with

1968

block data parameter transfer by RAM. The
computing resources implied by this mapping
presents the opportunity for pipelining the
synchronized data, and assembly, support, and
main processing tasks, as illustrated in Fig. 8. In
this way best use may be made of the computing
resources available.

Synchr

~onized| T i v
data | | Scenel

DAP ook it gy
scenel :

[2 il scone2

MP ., scemel . | scene

»
>

processing time

Fig. 8 Pipeline processing using separate computing
resources

There may be idle times in the pipeline
sequence for one or more resources. Best use of
resources is made if the task load and resource
are designed to give each resource a task of the
same duration. The design concept must be first
to satisfy the main processing throughput require-
ment, this uses the expensive HW, and then to
design the resources of the support and synchro-
nized data so that they never cause interruption to
the main processing task.

The requirement for a multi-CPU MP has been
identified. Best efficiency is always achieved
when each CPU is working independently on a
partitioned data blocks. A general purpose multi-
CPU workstation, for example a SUN workstation,
does not give a computational rate increase in
linear proportion to the number of CPU’s added
primarily because of its methods of memory
access and co-ordination. In addition multi-CPU
workstations do not support the number of CPU’s
required by the E-SAR processor. A different HW
and SW architecture is required for the MP. An
array processor is a more efficient system for
executing many similar tasks in parallel using
partitioned data blocks.

However, an array processor requires a host

=% / The Mapping Method for Parallel Processing of SAR Data

computer system to isolate it from the LAN and
to co-ordinate its activities. Operationally we can
take advantage of this situation since the DAP
and SP tasks can in principle be executed on the
host workstation. Once the host has initiated the
array processor activities it can be used to
process the parameters for the next scene and to
handle the MMI activities of the current process.
This facilitates operational pipelining. Then, the
proper top level HW configuration is shown in
Fig. 9.

E-SAR Processor
Host
Work-
station Array SAR
Synchron- Processor .
ized data <TP”|- DAP [7
- SP - MP
- MMI T
- I/O !
LAN
local i local 5
disk | | disk |
buffer :(buffer

Fig. 9 Top level HW configuration

Many possible methods of parallel processing in
array processor can be imagined. For E-SAR,
requiring approximately 23 processors, one
possible method based on method 3 may be
appropriate : define data into 4 sub-swaths : with
each sub-swath dedicate :

®2 CPU’s for
data),

®4 CPU’s for azimuth processing(partitioned
data),

@®arranged as a

range processing(partitioned

range-azimuth pipeline(the
range processing load = 1/2 that of azimuth),
ethus, total : 24 CPU’s in parallel.

This configuration meets the performance levels
derived in this paper, using CPU’s with
performance at the level currently available. Data
common to all processors, for example radar
auxiliary data, universal constants, can be declared

as read only so that each CPU takes a copy to
its own local memory partition. IfO should be
supported by non-blocking methods. 1 disc
controller is required for input and at least 1
controller for output, served either by the array
processor or host. Having first defined the MP
throughput capability the host
resources can be defined so that neither of them
constitutes a data flow bottleneck.

workstation

V. Conclusion

Most of the data handling in a SAR processor
can be thought of as correlation of the received
signal with a two-dimensional reference function.
Thus, it is very essential to apply the mapping
method for parallel
processor during design stage before implemen-
tation.

processing of the SAR

This paper identifies the impact of the IfO and
algorithm structure upon parallel processing
methods to be assessed. It describes work on the
derivation of the mapping method and sets out
the parallel processing procedure and configuration
of the SAR processor. Also, simulation has been
performed to the E-SAR processor. It suggests
proper top level HW configuration and parallel
of that.
improves significantly from year to year. No
special HW is required and SW can be developed
without dependence upon final HW selection,

processing method HW performance

since no HW dependent protocols are required.
Therefore, our approach can provide a practical
mapping method for parallel processing of the

airbome as well as spaceborne SAR data
processing.

REFERENCES
[1] Kuang Y. Liu, and Wayne E. Arens,

Spacecraft on-board SAR image generation for
Eos-type missions, IEEE Trans. Geosci. Remote
Sensing, vol. 27, no. 2, pp. 184-192, March
1989.

[2] Ursula Benz, Klaus Strodl, and Alberto

1969

PFEA83=F=] *01-11 Vol.26 No.11

Moreira, A comparison of several algorithms
for SAR raw data compression, [EEE Trans.
Geosci. Remote Sensing, vol. 33, no. 5, pp.
1266-1276, Sep. 1995.

[3] Einar-Arne Herland, A SAR processor for a
GIS environment, in Proc. Int. Geosci. Remote
Sensing. Symp. IGARSS 91, vol. 2, pp. 623-626,
1991.

[4] Charles Elachi, Spaceborne Radar Remote
Sensing:Applications and Techniques. New
York : IEEE Press, chl, 4, 5, 1988.

[5] Floyd M. Henderson, and Anthony J. Lewis,
Manual of Remote Sensing, vol. 2 : Principles
and Applications of Imaging Radar. New York
: John Wiley & Sons, Inc., ch. 2, 1998,

[6] Donald R. Wehner, High Resolution Radar.
Norwood, MA, Artech House, Inc., ch 6, 1987.

[71 Dan 1. Moldovan, Parallel Processing : From
Applications to Systems. San Mateo, California
: Morgan Kaufmann Publishers, Inc., ch 4, 5, 6,
1993.

[8] John C. Curlander, and Robert N. McDonough,
Synthetic Aperture Radar : Systems & Signal
Processing. New York : John Wiley & Sons,
Inc., ch 9, appendix A, 1991.

1970

£ ¢l E(nPyo Hong) 239
P=-5AIE3] =FA] Vol. 26, No. 9B,

2001d 94 =

F i S(Jae-Woo Joo) 34

Y5EAIE) =EA] Vol. 26, No. 9B,
20014 99 FHx

4t 3t THHan-Kyu Park) A3
FEAIEE] =F] Vol. 26, No. 9B,
20014 9 3=

