Proteomic Application in Cell Biology

세포생물학과 Proteomics 응용

  • 김동욱 (예일대 의대 세포생물학과/분자 의과학 연구소)
  • Published : 2001.06.01

Abstract

As the complete genomic sequences accumulate, the use of global techniques became possible. DNA microarray is a powerful technology for measuring global mRNA levels. This method, however, does not provide information on post-translational modifications of proteins. In addition, mRNA levels do not strictly correlate with protein concentrations, especially for lower-abundance proteins. Therefore, studies at the level of transcription are not sufficient to understand cellular activity. Proteomic techniques to analyze protein expression and function at the large-scale have been developed and used. This review introduces a simple explanation for proteomic analysis and examples of how proteomics is applied in cell biology.

많은 생물체의 완전한 genome sequence가 속속 밝혀지면서 세포의 기능을 종합적으로 평가하려는 노력들이 이어져 왔다. DNA microarray는 세포 전체의 유전자 전사, 즉 mRNA 레벨을 측정해주므로 세포가 처해있는 서로 다른 환경 속에서 유전자 발현의 차이를 측정할 수 있다. 그러나 유전자 발현의 최종 산물은 mRNA를 통해 번역된 단백질에 해당되고, 많은 단백질이 번역후 수식(post-translational modification) 과정을 거쳐 세포 내에서 기능을 발휘하므로 진정한 세포의 생리학적 상태를 평가하기 위해선 단백질 레벨의 분석이 필수적이다. Proteomics란 유전자 산물 즉 단백질의 기능을 large-scale로 분석하는 것으로 정의된다. 이것은 genome에 의해 만들어지는 모든 단백질(proteome)을 의미하기도 하고 좁은 의미에서는 세포내의 어떤 organelle(예: Golgi Complex)에 존재하는 단백질 혹은 어떤 protein complex를 지칭하기도 한다. Proteomics는 어떤 주어진 조건에서 특별한 세포 또는 organelle에서 발현되는 단백질들을 연구하고 이해하는데 강력한 수단이 되고 있다. 이런 proteomics는 genomics, bioinformatics 등과 유기적으로 연결되어 세포의 기능을 입체적으로 이해하는데 도움을 준다. 본고에서는 proteomic analysis 과정을 간단히 살피고 최근 세포 생물학에서 이루어지는 proteomics의 응용을 살펴본다.

Keywords

References

  1. Electrophoresis v.21 Towards a two-dimensional proteome map of Mycoplasma pneumoniae Regula, J.T.;B. Ueberle;G. Boguth;A. Gorg;M. Schnolzer;R. Hermann;R.R. Frank
  2. Electrophoresis v.21 Membrane proteins and proteomics: Un amour impossible? Santoni, V.;M. Molloy;T. Rabilloud
  3. Traffic v.1 Proteomic Analysis of Two Functional states of the Golgi Complex in mammary epithelial cells Wu. C.C.;J.R.Ⅲ Yates;M.C.Neville;K.E. Howell
  4. Electrophoresis v.21 Proteomics of rat liver Golgi complex: Minor proteins are identified though sequential fractionation Taylor. R.S.;C.C. Wu;L.G. Hays;J.K.Eng;J.R.Ⅲ Yates;K.E. Howell
  5. Electrophoresis v.19 Two-dimensional electrophoresis of human placental mitochondria and protein identification by mass spectrometry: toward a human mitochondrial proteome Rabilloud, T.;S. Kieffer;V. Procaccio;M. Louwagie;P.L. Courchesne;S.D. Patterson;P. Martinez;J.Garin;J. Lunardi
  6. J. of Mass Spectrometry v.33 Mass spectrometry and the age of the proteome Yates, J.R.Ⅲ.
  7. Traffic v.1 Proteomic tools for cell biology McDonald, W.H.;J.R.Ⅲ Yates
  8. Proc. Natl. Acad. Sci. USA v.96 Accurate quantitation of protein expresion and site-specific phosphorylation Oda, Y.;K. Huang;F.R. Cross;D. Cowburnand;B.T. Chait
  9. Nat. Biotechnol. v.17 Quantitative analysis of complex protein mixtures using isotope-coded affinity tags Gygi, S.P.;B. Rist;S.A. Gerber;F. Turecek;M.H. Gelb;R. Aebersold
  10. Adv. Enzymol. Relat. Areas Mol. Biol. v.67 Post-tranlational modification of proteins Krishna, R.G.;F. Wold.
  11. J. Mol. Biol. v.289 High-throughput mass spectrometric descovery of protein post-translational modifications Wilkins, M.R.;E. Gasteiger;A.A. Gooley;B.R. Herbert;M.P. Molloy;P.-A. Binz;K. Ou;J.-C, Sanchez;A. Bairoch;K.L. Williams;D.F. Hochstrasser
  12. Electrophoresis v.21 Proteomics reveal a link between the endoplasmic reticulum and lipid secretory mechanism in mammary epithelial cells Wu, C.C.;K.E. Howell;M.C. Neville;J.R.Ⅲ Yates;J.L. McManaman
  13. Traffic v.1 GMx33: A novel family of trans-Golgi proteins identified by proteomics Wu, C.C.;R.S. Taylor;D.R. Lane;M.S. Ladinsky;J.A. Weisz;K.E. Howell
  14. Electrophoresis v.21 Complementing genomics with preteomics: The membrane subproteome of Pseudomonas aeruginosa PAOI Nouwens A.S.;S.J. Cordwell;M.R. Larsen;M.P. Molloy;M. Gillings;M.D.P. Willcox;B.J. Walsh
  15. Electrophoresis v.21 Two-dimensional map of the proteome of Haemophilus influenzae Langen, H.;B. Takacs;S. Evers;P. Berndt;H.-W. Lahm;B.D. Wipf;C. Gray;M. Feountoulakis
  16. Eur. J. Biochem v.267 The proteome of Mycoplasma genitalium Wasinger, V.C.;J.D. Pollack;L. Humphery-Smith
  17. J. Cell Biol. v.141 Analysis of the Saccharomyces spindle pole by matrix-assisted laser desorption/ionization (MALDI)mass apectrometry Wigge, P.A.;O.N.Jensen;S.Homles;S. Soues;M. Mann;J.V. Kilmartin
  18. J. Cell Biol. v.148 The yeast nuclear pore complex: composition, architecture, and transport mechanism Rout, M.P.;J.D. Aitchison;A. Suprapto;K. Hjertaas;Y.Zhao;B.T. Chait
  19. EMBO J. v.17 TRAPP, a highly conserved novel complex on the cis-Golgi that mediates vesicle docking and fusion Sacher, M.;Y. Jiang;J. Barrowman;A. Scarpa;J. Burston;L. Chang;D. Schieltz;J.R.Ⅲ Yates;H. Abeliovich;S. Ferro-Novick
  20. Mol. Biol. Cell v.10 High-copy suppressor analysis reveals a physical interaction between Sec34p and Sec35p, a protein implicated in vesicle docking Kim, D.W.;M. Sacher;A. Scarpa;A.M. Quinn;S. Ferro-Novick
  21. Eur. J. Cell Biol. v.79 Identification and characterization of five new subunits of TRAPP Sacher, M.;J. Barrowman;D.Schieltz;J.R.Ⅲ Yates;S. Ferro-Novick
  22. Nat. Biotechnol. v.17 A generic protein purification method for protein complex characterization and proteome exploration Rigaut, G;A. Shevchenko;B. Rutz;M. Wilm;M. Mann;B. Seraphin
  23. Trends in Biochem. Sci. v.26 Kinase chips hit the proteomics era Williams, D.M.;P.A. Cole
  24. Nat. Genet. v.26 Analysis of yeast protein kinase using protein chips Zhu, H.;J.F. Klemic;S. Chang;P. Bertone;A. Casamayor;K.G. Klemic;D. Smith;M. Gerstein;M.A. Reed;M. Snyder
  25. Curr. Opin. Chem. Biol. v.5 Protein arrays and microarrys Zhu, H.;M. Snyder
  26. Trends in Neurosci. v.24 Proteomics of the nervous system Husi,H.;S.G.N. Grant
  27. Science v.292 Integrated genomic and proteomic analyses of a systematically perturbed metabolic network Ideker, T.;V. Thorsson;J.A. Ranish;R. Christmas;J. Buhler;J.K.Eng;R. Bumgarner;D.R. Goodlett;R. Aebersold;L. Hood
  28. Circ. Res. v.88 Cardiovascular proteomics: evolution and potential Arrell, D.K.;I. Neverova;J.E. Van Eyk
  29. Methods Enzymol v.332 Functional proteomics analysis of GTPase signaling networks Alton, G.;A.D. Cox;L.G.3rd Toussaint;J.K. Westwick