High Temperature Oxidation of ${Fe_3}Al-4Cr$ Alloys

${Fe_3}Al-4Cr$ 합금의 고온산화

  • Kim, Gi-Young (Center for Advanced Plasma Surface Technology, Sungkyunkwan University) ;
  • Lee, Dong-Bok (Center for Advanced Plasma Surface Technology, Sungkyunkwan University)
  • 김기영 (성균관대학교 플라즈마 응용 표면기술 연구 센터) ;
  • 이동복 (성균관대학교 플라즈마 응용 표면기술 연구 센터)
  • Published : 2001.01.01

Abstract

Intermetallics of Fe-28%Al($Fe_3Al$) and Fe-28%Al-4%Cr($Fe_3Al-4Cr$) were oxidized at 1073, 1273 and 1473k in air for up to 17 days. The oxidation resistance of$Fe_3Al-4Cr$ was basically similar to or better than that of $Fe_3Al$. The oxide scales formed on $Fe_3Al$ consisted essentially of pure ${\alpha}-AL_2O_3$, while those formed on $Fe_3Al-4Cr$ consisted of ${\alpha}-AL_2O_3$ having dissolved iron and chromium ions. The preferential outward diffusion of substrate elements to form the outer oxide layer led to the formation of Kirkendall voids at the oxide-matrix interface. The scales formed on $Fe_3Al(-4Cr)$ were thin and dense up to 1273K, but they spalled easily at 1473K, accompanied by more weight gains.

Fe-28%Al($Fe_3Al$)과 Fe-28%Al-4%Cr($Fe_3Al-4Cr$) 금속간화합물을 대기중 1073, 1273, 1473k의 온도에서 최고 17일까지 장시간 산화시켰다. $Fe_3Al-4Cr$의 산화저항은 근본적으로 $Fe_3Al$과 거의 비슷하거나, 약간 우수하였다. $Fe_3Al$ 위에 형성된 산화물은 거의 순수한 ${\alpha}-AL_2O_3$로만 구성되어 있었으며, $Fe_3Al-4Cr$ 위에 형성된 산화물은 약간의 Fe와 Cr 이온이 고용된 ${\alpha}-AL_2O_3$로 구성되어 있었다. 외부산화막을 형성하기 위해 모재원소의 외부확산에 의해 산화물-모재 계면에는 Kirkendall 기공이 존재하였다. $Fe_3Al(-4Cr)$ 표면에 형성된 산화막은 1273k가지는 비교적 얇고 치밀하였으나, 1473k에서 산화막의 박리와 함께 상대적으로 큰 무게증가가 발생하였다.

Keywords

References

  1. C.T. Liu and K.S. Kumar, JOM, 45(5), 38 (1993)
  2. 박종우, 대한금속학회 회보, 5, 35 (1992)
  3. C.G. McKamey, J.H. DeVan, P.I. Tortorelli and V.K. Sikka, J. Mater. Res., 6, 1779 (1991) https://doi.org/10.1557/JMR.1991.1779
  4. V.K. Sikka, Processing, Properties and Application of Iron Aluminides, eds. J.H. Schneibel and M.A. Crimp, TMS, Warrendale, PA, p. 3 (1994)
  5. J.R. Knibole and R.N. Wright, Mater. Sci. Eng., A153, 382 (1992) https://doi.org/10.1016/0921-5093(92)90224-O
  6. C.G. McKamey, J.A. Horton and C.T. Liu, Scrip. Metall., 22, 1679 (1988) https://doi.org/10.1016/S0036-9748(88)80265-5
  7. 최한철, 최답천, 김관휴, 대한금속학회지, 33, 1677 (1995)
  8. J.H. DeVan, Oxidation of High-Temperature Intermetallics, eds. T. Grobstein and J. Doychak, TMS, Warrendale, PA, p. 107 (1989)
  9. P.F. Tortorelli and J.H. DeVan, Mat. Sci. and Eng., A153, 573 (1992) https://doi.org/10.1016/0921-5093(92)90253-W
  10. P.F. Tortorelli and J.H. DeVan, Processing, Properties and Application of Iron Aluminides, eds J.H. Schneibel and M.A. Crimp, TMS, Warrendale, PA, p. 257 (1994)
  11. B.H. Rabin, R.N. Wright, J.R. Knibloe, R.V. Raman and S.V. Rale, Mat. Sci. and Eng., A153, 706 (1992) https://doi.org/10.1016/0921-5093(92)90275-6
  12. W.C. Hagel, Corros., 21, 316 (1965)
  13. E.N. Bunting, Bur. Standards J. Research, 6, 948 (1931)
  14. R. Prescott and M.J. Graham, Oxid. Met., 38, 233 (1992) https://doi.org/10.1007/BF00666913
  15. J.D. Kuenzly and D.L. Douglass, Oxid. Met., 8, 139 (1974) https://doi.org/10.1007/BF00612170
  16. F.H. Stott, Mast. Sci. Tech., 4, 431 (1988)
  17. G.H. Meier, Oxidation of Intermetallics, eds. H.J. Grabke and M.Schuze, Wiley-VCH, New York, p. 15 (1997)
  18. I. Rommerskirchen, B. Eltester and H.J. Grabke, Oxidation of Intermetallics, eds, H.J. Grabke and M. Schutze, Wiley-VCH, New York, p. 175 (1997)