조성변화에 따른 Fe-Sm-O계 박막의 연자기적 성질

Influence of Composition on Soft Magnetic Properties of As-Deposited Fe-Sm-O Thin Films

  • 윤대식 (충남대학교 공과대학 재료공학과) ;
  • 조완식 (고기능성 자성재료 연구센터) ;
  • 고은수 (충남대학교 공과대학 재료공학과) ;
  • 이영 (충남대학교 공과대학 재료공학과) ;
  • 박종봉 (충남대학교 공과대학 재료공학과) ;
  • 김종오 (충남대학교 공과대학 재료공학과)
  • Yoon, T.S. (Division of Materials Engineering, Chungnam National University) ;
  • Cho, W.S. (Research Center for Advanced Magnetic Materials) ;
  • Koo, E.S. (Division of Materials Engineering, Chungnam National University) ;
  • Li, Ying (Division of Materials Engineering, Chungnam National University) ;
  • Park, J.B. (Division of Materials Engineering, Chungnam National University) ;
  • Kim, C.O. (Division of Materials Engineering, Chungnam National University)
  • 발행 : 2001.01.01

초록

Nanocrystalline Fe-Sm-O thin films were prepared by RF magnetron reactive sputtering method in $Ar+O_2$mixed atmosphere with the $O_2$content of 5%. The compositions of the thin films were changed by changing the number of $Sm_2O_3$ chips. The best soft magnetic properties of the thin film with the composition of $Fe_{83.4}Sm_{3.4}O_{13.2}$ were saturation flux density of 18 kG, coercivity of 0.82 Oe and effective permeability about 2,600 at 0.5~100 MHz, respectively. The electrical resistivity of Fe-Sm-O thin films was increased with increasing the amount of Sm and O elements which combined each other, the electrical resistivity of$Fe_{83.4}Sm_{3.4}O_{13.2}$ thin film was $130{\mu}{\Omega}cm$. In case of the small amount of Sm and O elements, the microstructures of Fe-Sm-O thin films showed a precipitated phase of $Sm_2O_3$ on the ${\alpha}-Fe$ phase. With the increase of the amount of Sm and O elements, the microstructures of the Fe- Sm-O thin films were changed into a mixed structure of ${\alpha}-Fe$ crystal-phase and Sm-oxide amorphous phase. The Fe-Sm-O thin films with Fe content in the range of 72~94 at% exhibited the quality factor (Q = $\mu$′/$\mu$") of 7~75 up to 50 MHz.

키워드

참고문헌

  1. K. Nago, H. Sakakima, and K. Ihara, IEEE Transl. J. Magn. Jpn. 7, 119 (1992)
  2. I. Iitake and Y. Shimada, IEEE Transl. J. Magn. Jpn. 7, 113 (1992)
  3. N. Hasegawa and M. Satio, IEEE Transl. J. Magn. Jpn. 6, 91 (1991)
  4. N. Hasegawa, M. Satio, A. Kojima, A. Makino, Y. Misaki and Y. Watanabe, IEEE Transl. J. Magn. Jpn. 6, 120 (1992)
  5. N. Hasegawa and M. Satio, J. Magn. Magn. Mater. 103, 274 (1992) https://doi.org/10.1016/0304-8853(92)90200-8
  6. N. Hasegawa, N. Kataoka, K. Hiraga, and H. Fujimori, Mater. Trans. JIM 33, 632 (1992)
  7. J. Huijbregtse, F. Roozeboom, J. Sietsma, J. Donkers, T. Kuiper, and E. van de Riet, J. Appl. Phys. 83(3), 1 February 1569 (1998) https://doi.org/10.1063/1.366867
  8. P.J.H. Bloemen and B. Rulkens, J. Appl. Phys.. 84 (12), 15 December 6778 (1998) https://doi.org/10.1063/1.369008
  9. A. Makino and Y. Hayakawa, J. Jpn. Inst. Metall. 57, 1301 (1993)
  10. A. Makino and Y. Hayakawa, Mater. Sci. Eng. A A181/A182, 1020 (1994)
  11. Y. Hayakawa and A. Makino, Nanostruct. Mater. 6, 989 (1995) https://doi.org/10.1016/0965-9773(95)00227-8
  12. H. Fujimori, Scr. Metall. Mater. 33, 1625 (1995) https://doi.org/10.1016/0956-716X(95)00395-C
  13. Y. Hayakawa, K. Hirokawa, and A. Makino, IEEE Transl. J. Magn. Jpn. 9, 286 (1996)
  14. Y. Hayakawa, N. Hasegawa, A. Makino, S. Mitani, and H. Fujimori, J. Magn. Magn. Mater. 154 175 (1996) https://doi.org/10.1016/0304-8853(95)00579-X
  15. T.S. Yoon, W.S. Cho, E.S. Koo, Ying Li, J.B. Park and C.O. Kim, Korean J. Mater. Res., 10, 755 (2000)
  16. H.J. Lee, S. Mitani, T. Shima, and H. Fujimori, J. Magn. Jpn. 22, 625 (1998) https://doi.org/10.3379/jmsjmag.22.625
  17. B.D. Cullity, 'Elements of X-ray Diffraction', Second Edition (1978), Chap.3
  18. N. Kobayashi, S. Ohnuma, H. Fujimori, and T. Masumoto, J. Magn. Jpn. 20, 469 (1996) https://doi.org/10.3379/jmsjmag.20.469
  19. J.Y. Park, J.Y. Kim, K.Y. Kim, S.H. Han and H.J. Kim, J. Kor. Magn. Soc. 7, 237 (1997)