Preparation and Photocatalytic Characteristics of $TiO_2$ by Anodic Oxidation Process

양극산화법에 의한 광촉매용 $TiO_2$제조 및 특성

  • Jang, Jae-Myeong (School of Metallurgical and Materrials Engineering, Kookmin University) ;
  • Kim, Seong-Gap (School of Metallurgical and Materrials Engineering, Kookmin University) ;
  • O, Han-Jun (Dept. of Materials Engineering,Han-Seo University) ;
  • Lee, Jong-Ho (Department of Chemistry, Hanseo University) ;
  • Ji, Chung-Su (School of Metallurgical and Materrials Engineering, Kookmin University)
  • 장재명 (국민대학교 금속재료공학부) ;
  • 김성갑 (국민대학교 금속재료공학부) ;
  • 오한준 (한서대학교 재료공학과) ;
  • 이종호 (한서대학교 화학과) ;
  • 지충수 (국민대학교 금속재료공학부)
  • Published : 2001.01.01

Abstract

$TiO_2$films for photocatalytic reaction were synthesized by anodizing process. The photocatalytic efficiencies of anodized $TiO_2$were evaluated by the rate of decomposition of aniline blue. The properties of photocatalysis on anodic $TiO_2$films have been observed, but the efficiencies of photocatalytic reaction depended on the conditions of films formation. The microstructure of the anodic film formed in $H_2SO_4$ solution differed from that of $TiO_2$films formed in $H_2SO_4+H_3PO_4$ solution. It has been shown that the appropriate applied-voltage for anodizing of titanium for photocatalysis was 180V in both aqueous solutions.

양극산화법을 이용하여 광촉매 특성을 나타내는 $TiO_2$ 피막을 제조하고 염료의 분해반응을 통하여 광분해 효율을 조사하였다 양극산화법에 의해 제조된 산화피막은 모두 광촉매 분해특성이 있었으며 양극산화의 조건에 따라서 $TiO_2$ 피막의 성장거동과 피막 형태에 차이가 나타났다. 황산용액에서 양극산화된 $TiO_2$ 피막은 불규칙적 인 입자모양으로 anatase와 rutile이 혼합된 조직이었으며, 인산이 첨가된 혼합용액에서 형성된 $TiO_2$는 anatase로 셀 모양의 피막형태로 생성되었다. 광촉매 특성에 적합한 양극산화의 인가 전압은 180V인 것으로 나타났다.

Keywords

References

  1. A. Ishizaki, 表面技術, 50, 251 (1999)
  2. M. Shimonigoshi, 表面技術, 50, 247 (1999)
  3. W.Y. Lin, et al, J. Electrochem. Soc., 144, 497 (1997) https://doi.org/10.1149/1.1837439
  4. J. Kuraki and H. Tada, 表面技術, 12, 1171 (199)
  5. A. Fujishima and K. Kohayakawa, J. Electrochem. Soc., 122, 1487 (1975) https://doi.org/10.1149/1.2134048
  6. L.Tinucci, E. Borgarello, C. Minero and E. Pelizetti, Photocatalytic Purification and Treat-ment of Water and Air, Elsevier Science Publishers B.V. 1993, p. 585-594
  7. L. Choy and B. Su, J. Mat. Sci. Letters, 18, 943 (1999) https://doi.org/10.1023/A:1006682217672
  8. S. Tokuyoshi, JETI, 44, 63 (1996)
  9. K. Rajeshwar and J.G. Ibanez, Environmental Electrochemistry, Academic Press, 1997, p. 575
  10. H. Yoneyama, N. Nishimura, and H. Tamura, J. Phys. Chem. 85, 268 (1981) https://doi.org/10.1021/j150603a010
  11. T. L. Rose and C. Nanjundiah, J. Phys. Chem. 89, 3766 (1985) https://doi.org/10.1021/j100263a036
  12. R. W. Mattews, J. Phys. Chem. 91, 3328 (1987) https://doi.org/10.1021/j100296a044