Processing and Properties of Mechanically Alloyed Iron-Silicide

기계적 합금화에 의한 Iron-Silicide의 제조 및 특성

  • Ur, Soon-Chul (Dept. of Naterials Science & Engineering, chungju National University) ;
  • Kim, Il-Ho (Dept. of Naterials Science & Engineering, chungju National University)
  • Published : 2001.02.01

Abstract

Iron- silicide has been produced by mechanical alloying process and consolidated by hot pressing. As-consolidated iron silicides were consisted of $\beta$-FeSi$_2$ phase, and untransformed mixture of $\alpha$-$Fe_2Si_5$ and $\varepsilon$-FeSi phases. Isothermal annealing has been carried out to induce the transformation to a thermoelectric semiconducting $\beta$-$FeSi_2$ phase. The condition for $\beta$-FeSi$_2$ transformation was investigated by utilizing DTA, SEM, TEM and XRD analysis. The phase transformation was shown to be taken place by a vacuum isothermal annealing at $830^{\circ}C$ for 24 hours. The mechanical and thermoelectric properties of $\beta$-FeSi$_2$ materials before and after isothermal annealing were characterized in this study.

기계적 합금화 공정을 이용하여 열전재료$FeSi_2$분말을 제조하여 열간압축법을 사용하여 성형하였다. 열간압축 성형된 $FeSi_2$는 열전특성을 나타내는 $\beta$-$FeSi_2$ 상 및 상변태가 완료되지 않은 $\alpha$-$Fe_2$$Si_{5}$$\varepsilon$-FeSi의 혼합상으로 이루어져 있음이 확인되었다. 열전재료로의 $\beta$-$FeSi_2$ 상변태 유도를 위해 항온열처리를 행하여 상변태 조건을 조사하였다. SEM, TEM, XRD, DTA 등을 이용하여 상변태 거동을 분석한 결과, $830^{\circ}C$에서 24시간 진공 항온열처리 후 단상의 $\beta$-FeSi$_2$ 상을 얻을 수 있었다. 항온열처리 전의 열간압축 성형체와 상변태가 완료된 $\beta$-FeSi$_2$의 기계적 성질과 열전 특성을 측정하여 비교 분석하였다.

Keywords

References

  1. R.M. Ware and D.J. McNeil, Proc. IEE, 111 (1), 178 (1964)
  2. U. Birkholz and J. Scheim, Fiz. Stat. Sol, 27, 413 (1968)
  3. P.Y. Dusausay, J. Protas, R. Wandi and B. Roques, Acta Crystal., B27 (1), 209 (1971)
  4. S. Tokita, T. Amano, M. Okabayashi and I. A. Nishida, Proc. 12th Int'l Conf. on Thermoelectrics, Nov. 9-11, Yokohama, Japan, 197 (1993)
  5. I. Isoda, Y. Shinohara, Y. Imai, I. A. Nishida and O. Ohashi, Proc. 17th Int'l Conf. on Thermoelectrics, May 24-28, Nagoya, Japan, 390 (1998) https://doi.org/10.1109/ICT.1998.740401
  6. I. Yamauchi, I. Ohnaka and S. Uyema, Proc. 12th Int'l Conf. on Thermoelectrics, Nov. 9-11, Yokoha-ma, Japan, 289 (1993)
  7. S. Shiga, K. Fujimoto and M. Umemoto, Proc. 12th Int'l Conf. on Thermoelectrics, Nov. 9-11, Yokoha-ma, Japan, 311 (1993)
  8. I. Nishida, Phy. Rev., B7, 2710 (1971) https://doi.org/10.1103/PhysRevB.7.2710
  9. U. Birkholtz and J. Schelm, Phy, Stat. Sol., 27, 413 (1968) https://doi.org/10.1002/pssb.19680270141
  10. J.S. Benjamin, Met. Trans, 1, 1943 (1970)
  11. D.M. Rowe and V. S. Schuka, J. Appl. Phys., 52 (12), 7421 (1981) https://doi.org/10.1063/1.328733
  12. S.C. Ur, P. Nash and G. T. Higgins, Scripta Materialia 34 (1), 53 (1996) https://doi.org/10.1016/1359-6462(95)00470-X
  13. S.J. Hwang, P. Nash, M. Dollar and S. Dymek, Mater. Sci. Forum, 88-90, 611 (1990)
  14. M. Uemoto, Materials Transaction, JIM, 36, 373 (1995)
  15. G.V. Raynor and V. G. Girlin, 'Phase equilibria in iron ternary alloy', Institutes of Metals, 47 (1988)
  16. T. Kojima, M. Okamoto, I. Nishida, Proc. 5th Int'l Conf. on Thermoelectric Energy Conversion, 5 (1984)
  17. I. Nishida, Phys, Rev. B7, 2710 (1973) https://doi.org/10.1103/PhysRevB.7.2710
  18. T. Sakata, Y. Sakai, H. Yoshino, H. Fujii and I. Nishida, J. Less Common Metals, 61, 301 (1978) https://doi.org/10.1016/0022-5088(78)90225-4