Optical Properties of Diamond Like Carbon Films Deposited by Plasma Enhanced CVD

rf PECVD법으로 증착된 DLC film의 광학적 성질

  • Kim, Moon-Hyup (School of Natersials and Metallurgical Engineering, Kumoh National University of Technology) ;
  • Song, Jae-Jin (The First R & D Center, Korea Electronices Co., Ltd.) ;
  • Kim, Seong-Jin (School of Natersials and Metallurgical Engineering, Kumoh National University of Technology)
  • 김문협 (금오공과대학교 재료금속공학부) ;
  • 송재진 (한국전자(주), 종합연구소 제1R&D 센터) ;
  • 김성진 (금오공과대학교 재료금속공학부)
  • Published : 2001.07.01

Abstract

A diamond-like carbon(DLC) films were deposited on the borosilicate glass substrate by radio frequency plasma enhanced chemical deposition(rf-PECVD). The $methane(CH_4)-hydrogen(H_2)$ gas mixture was used as precursor gas. The morphologies, the structure and the optical properties of the DLC films were investigated by SEM, Raman and UV spectrometer. The deposition rate was slightly increased with the hydrogen concentration in the gas mixture and it maintained constant at over 25 sccm of the gas flow rate. The optical band gap calculated by UV spectra decreased with increase of deposition time and DC self bias, but that were not effected by hydrogen content. Most effective parameter on the transmittance of film was bias voltage, especially in the range of ultra violet and visible light.

rf PECVB법을 이용하여 붕규산 유리 기판 위에 diamond like carbon(DLC) 박막을 증착하였다. 메탄(CH$_4$)-수소(H$_2$) 혼합 가스를 전구체 가스로 사용하였다. DLC 박막의 형상, 구조 및 광학적 특성은 SEM, 라만 및 UV 스펙트럼으로 분석하였다. 증착 속도는 혼합 가스의 수소 농도에 따라 증가하다가, 혼합 가스 유량이 25 sccm 이상에서는 일정하게 되었다. UV스펙트럼으로 계산한 박막의 optical band gap은 증착 시간과 DC serf bias의 증가에 따라 감소하는 경향을 나타냈으나, 수소함량에 의해서는 거의 영향이 없었다. 박막의 투과율에 가장 큰 영향을 미치는 인자는, 특히 자외선 영역과 가시광선 영역에서, bias 전압이었다.

Keywords

References

  1. J.C. Angus, and F.J. Jansen, Vac. Sci. Technol., A6, 1778, (1988) https://doi.org/10.1116/1.575296
  2. V.K. Kudoyarova, A.V. Chernyshov and T.K. Zvonareva, Surface and Coatings Technol., 100, 192, (1998) https://doi.org/10.1016/S0257-8972(97)00681-6
  3. Y. Kokaku, M. Kohno, S. Fujinaki, and M. Kitoh, J. Vac. Sci. Technol., A9, 31162, (1991) https://doi.org/10.1116/1.577595
  4. N. Fourches and G. Turban, Thin Solid Films, 240, 28, (1994) https://doi.org/10.1016/0040-6090(94)90689-0
  5. S.S. Camargo Jr., R.A. Santos, A.L.B. Neto, R. Carius and F. Finger., Thin Solid Films, 332, 130, (1998) https://doi.org/10.1016/S0040-6090(98)01208-5
  6. V. Palshin, E.I. Meletis, S. Ves and S. Logothetidis, Thin Sollid Films, 270, 165, (1995) https://doi.org/10.1016/0040-6090(95)06912-7
  7. J. Shiao and R. W. Hoffman, Thin Solid Films, 283, 145, (1996) https://doi.org/10.1016/0040-6090(95)08151-8
  8. P. Reinke, W. Jacob, and W. Moller, J. Appl. Phys., 74, 21354, (1993) https://doi.org/10.1063/1.354892
  9. G.J. Vandentop, M. Kawasaki, R.M. Nix, I.G. Brown, M. Salmern and G. A. Somorjai, Phys. Review, B41(5), 53200, (1990) https://doi.org/10.1103/PhysRevB.41.3200
  10. W. Choi, H.J. Kim and S.E. Nam, Korean Journal of Mater. Research, 7 (1), 8, (1997)
  11. S.Y. Kim, J.S. Lee and J.S. Park, The Korean Journal of Ceramics, 4(1), 20, (1998)
  12. D. Beeman, J. Silverman, R. Lynds and M.R. Anderson, Phys. Rev., B30(2), 870, (1984) https://doi.org/10.1103/PhysRevB.30.870
  13. J.J. Song and S.J. Kim, Korean Journal of Mater. Research, 9(11), 1088, (1999)
  14. J.H. Kaufman and S. Metin, Phys. Rev., B39(18)m 13053 (1989) https://doi.org/10.1103/PhysRevB.39.13053
  15. L.A. Farrow, B.J. Wilkens, A.S. Gozdz and D.L. Hart, Phys. Rev., B,41, 10132, (1990) https://doi.org/10.1103/PhysRevB.41.10132