Stress Concentration Effects on the Nucleation of the Structural Defects in Highly Strained Heteroepitaxial Layers

高變形된 異種 에피층에서 응력 집중이 결정결함 생성에 미치는 영향

  • Kim, Sam-Dong (Department of Electronic Engineering, Dongguk University) ;
  • Lee, Jin-Koo (Department of Electronic Engineering, Dongguk University)
  • Published : 2001.07.01

Abstract

We carried out the kinetic model calculations in order to estimate the nucleation rates for two kinds of half-loop dislocations in highly strained hetero-epitaxial growths; $60^{\circ}$dislocations and twinning dislocations. The surface defects and the stress concentration effects were considered in this model, and the remaining elastic strain of the epilayers with increasing film thickness was taken into account by using the modified Matthews' relation. The calculations showed that the stress concentration effect at surface imperfections is very important for describing the defect generation in highly mismatched epitaxial growth. This work also showed that the stress concentration effect determined the type of dislocation nucleating dominantly at early growth stages in accordance with our XTEM (cross-section transmission electron microscopy) defect observation.

본 연구에서는 고변형된 이중 에피층에서 두 가지 종류의 반원 전위 루프 ($60^{\circ}$및 쌍격자 전위)의 생성 속도물 예측하는 모델을 제안한다. 모델링 시, 에피층 표면에서 발생하는 결함과 이곳에 집중되는 응력 효과를 고려하였으며, Matthew의 식을 발전시켜 에피층 두께에 따른 잔류 변형율을 변수로 사용하였다. 모델링을 통한 계산 결과에 의하면, 응력 집중 현상은 고변형된 이종에피층에서 전위 및 결정 결함 현상을 설명하는 데 매우 중요하였다. 또한,본 연구를 퉁하여, 응력 집중 현상이 에피층 성장 초기에 생성되는 전위 형태를 결정하는 주요한 인자 중 하나임을 단면 투과 전자 현미경 결과와의 비교를 통해 확인할 수 있었다.

Keywords

References

  1. J. E. Palmer, G. Burns, C. G. Fonstad, and C. V. Thompson, Appl. Phys. Lett. 55, 990 (1989) https://doi.org/10.1063/1.101698
  2. J. H. van der Merwe, J. Appl. Phys. 34, 123 (1963) https://doi.org/10.1063/1.1729051
  3. J. W. Matthews and A. E. Blakeslee, J. Cryst, Growth 27, 118 (1974)
  4. I. J. Fritz, S. T. Picraux, L. R. Dawson, T. J. Drummond, W. D. Laidig, and N. G. Anderson, Appl. Phys. Lett. 46,967 (1985) https://doi.org/10.1063/1.95783
  5. B. W. Dodson, Phys. Rev. (B) 35,5558 (1987) https://doi.org/10.1103/PhysRevB.35.5558
  6. B. W. Dodson, Appl. Phys, Lett. 53, 394 (1988) https://doi.org/10.1063/1.99889
  7. D. K. Choi et al., Journal of Crystal Growth 85, 9 (1987) https://doi.org/10.1016/0022-0248(87)90198-9
  8. S. D. Gavazza and D. M. Barnett, Journal of Mechanics and Physics of Solids 24,171 (1976) https://doi.org/10.1016/0022-5096(76)90001-6
  9. H. Gottschalk et al., Phys, Stat. Sol. (a) 45, 207 (1978) https://doi.org/10.1002/pssa.2210450125
  10. J. Y. Tsao and B. W. Dodson, Appl. Phys. Lett. 53, 848 (1988) https://doi.org/10.1063/1.100091
  11. G. E. Dieter, Mechanical Metallurgy (McGrawHill, 1976)
  12. P. Pirouz, F. Ernst and T. T.Cheng, Heteroepitaxy on Silicon: Fundamentals, Structure and Devices (MRS, Pittsburgh PE., USA, 1988)