A study of the photoluminescence of undoped ZnO and Al doped ZnO single crystal films on sapphire substrate grown by RF magnetron sputtering

RF 스퍼터링법으로 사파이어 기판 위에 성장한 ZnO와 ZnO : A1 박막의 질소 및 수소 후열처리에 따른 Photoluminescence 특성

  • Cho, Jung (Department of Ceramics engineering, Yonsei University) ;
  • Yoon, Ki-Hyun (Department of Ceramics engineering, Yonsei University) ;
  • Jung, Hyung-Jin (Thin Film Technology Research Center, KIST) ;
  • Choi, Won-Kook (Thin Film Technology Research Center, KIST)
  • 조정 (연세대학교 세라믹 공학과) ;
  • 윤기현 (연세대학교 세라믹 공학과) ;
  • 정형진 (한국과학기술연구원 박막기술연구센터) ;
  • 최원국 (한국과학기술연구원 박막기술연구센터)
  • Published : 2001.10.01

Abstract

2wt% $Al_2O_3-doped$ ZnO (AZO) thin films were deposited on sapphire (0001) single crystal substrate by parellel type rf magnetron sputtering at 55$0^{\circ}C$. The as-grown AZO thin films was polycrystalline and showed only broad deep defect-level photoluminescence (PL). In order to examine the change of PL property, AZO thin films were annealed in $N_2$ (N-AZO) and $H_2$ (H-AZO) at the temperature of $600^{\circ}C$~$1000^{\circ}C$ through rapid thermal annealing. After annealed at $800^{\circ}C$, N-AZO shows near band edge emission (NBE) with very small deep-level emission, and then N-AZO annealed at $900^{\circ}C$ shows only sharp NBE with 219 meV FWHM. In Comparison with N-AZO, H-AZO exhibits very interesting PL features. After $600^{\circ}C$ annealing, deep defect-level emission was quire quenched and NBE around 382 nm (3.2 eV) was observed, which can be explained by the $H_2$passivation effect. At elevated temperature, two interesting peaks corresponding to violet (406 nm, 3.05 eV) and blue (436 nm, 2.84 eV) emission was firstly observed in AZO thin films. Moreover, peculiar PL peak around 694 nm (1.78 eV) is also firstly observed in all the H-AZO thin films and this is believed good evidence of hydrogenation of AZO. Based on defect-level scheme calculated by using the full potential linear muffin-tin orbital (FP-LMTO), the emission 3.2 eV, 3.05 eV, 3.84 eV and 1.78 eV of H-AZO are substantially deginated as exciton emission, transition from conduction band maximum to $V_{ Zn},$ from $Zn_i$, to valence band maximum $(V_{BM})$ and from $V_{o} to V_BM}$, respectively.

Keywords

References

  1. Y. R. Ryu, S. Zhu, D.C. Look, J. M. Wrobel, H. M. Jeong and H. W. White, J. Cryst. Growth, 216, 330 (2000) https://doi.org/10.1016/S0022-0248(00)00437-1
  2. T. Aoki, Y. Hatanaka, D. C. Look, Appl. Phys. Lett, 76 (22), 3257 (2000) https://doi.org/10.1063/1.126599
  3. K. Minegishi, Y. Koiwai and Y. Kikuchi, Jpn. J. Appl. Phys., 36, L1453 (1997) https://doi.org/10.1143/JJAP.36.L1453
  4. K. Postava, H. Sueki, M. Aoyama, T. Yamaguchi, K. Murakami and Y. Igasaki, Appl Surf. Sci., 175, 543 (2001) https://doi.org/10.1016/S0169-4332(01)00145-3
  5. M. Miyazaki, K. Sato, A. Mitsui and H. Nishimura, J. Non-Cryst Solids, 218, 323 (1997) https://doi.org/10.1016/S0022-3093(97)00241-X
  6. Y. R. Ryu, W. J. Kim and H.W. White, J. Crystal Growth, 216, 330 (2000) https://doi.org/10.1016/S0022-0248(00)00437-1
  7. K. Tomoinaga, N. Umezu, I Mori, T. Ushiro, T. Moriga and I. Nakabayashi, Thin Solid Films, 316, 85 (1998) https://doi.org/10.1016/S0040-6090(98)00394-0
  8. T. Minami, H. Sato. H. Nanto and S. Takata, Jpn. J. Appl. Phys., 24, L781 (1985)
  9. R. Cebulla, R. Wendt and K. Ellmer, J. Appl. Phys., 83 (2), 1087 (1998) https://doi.org/10.1063/1.366798
  10. K. 11. Kim, K.C. Park and D. Y. Ma, J. Appl. Phys., 81 (12), 7764 (1997)
  11. K. Tominaga, N. Umezu, I. Mori, T. Ushiro, T. Moriga, and I. Nakabayashi, J. Vac. Sci. Technol., A16(3), 1213 (1998) https://doi.org/10.1116/1.581261
  12. J. Hu and R. G. Gordon, J. Appl. Phys., 72, 5381 (1992) https://doi.org/10.1063/1.351977
  13. Y. Lgasaki and H. Saito, J. Appl. Phys., 69(4), 2190 (1991) https://doi.org/10.1063/1.348748
  14. Y. Chen, D. M. Bagnell, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys., 84, 3912 (1998) https://doi.org/10.1063/1.368595
  15. T. Makino, N. T. Tuan, Y. Segawa, C. H. Chia, A. Ohtomo, M. Kawasaki and H. Koinuma, J. Lumin., 87, 210 (2000) https://doi.org/10.1016/S0022-2313(99)00264-1
  16. K.K. Kim, J. H. Song, H. J. Jung, S. J. Park, J. H. Song, J. Y. Lee and W. K. Choi, J. Vac. Sci. Technol., A18(6), 2864 (2000) https://doi.org/10.1116/1.1318192
  17. D. M. Bagnall, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto, and T. Yao, J. Crystal Growth, 184/185, 605 (1998)
  18. T. Sekiguchi, N. Ohashi and Y. Terada, Jpn. J. Appl. Phys,36,L289 (1997) https://doi.org/10.1143/JJAP.36.L289
  19. J. M. Lee, K. M. Chang, K. K. Kim, W. K. Choi and S. J. Park, J. Electrochem. Soc., 148, Gl (2001)
  20. T. Sekiguchi, K. Haga and K. Inaba, J. Crystal Growth, 214,68 (2000) https://doi.org/10.1016/S0022-0248(00)00062-2
  21. F. A. Kroger, The Chemistry of Imperfect Crystals, North Holland, Amsterdam (1974)
  22. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant and J. A. Voiget, Appl. Phys. Lett, 68, 403 (1996) https://doi.org/10.1063/1.116699
  23. S. Tanaka, K. Takahashi, T. Sekiguchi, K. Sumino and J. Tanaka, J. Appl. Phys., 77 (8), 4021 (1995) https://doi.org/10.1063/1.359514