Effect of plasma oxidation time on TMR devices prepared by a ICP sputter

ICP 스퍼터를 이용한 TMR 소자 제작에서 절연막의 플라즈마 산화시간에 따른 미세구조 및 자기적 특성 변화

  • Lee, Yeong-Min (Dept.of Materials Sciences & Engineering, University of Seoul) ;
  • Song, O-Seong (Dept.of Materials Sciences & Engineering, University of Seoul)
  • 이영민 (서울시립대학교 재료공학과) ;
  • 송오성 (서울시립대학교 재료공학과)
  • Published : 2001.10.01

Abstract

We prepared tunnel magnetoresistance(TMR) devices of Ta($50\AA$)/NiFe($50\AA$)/IrMn(150$\AA$)/CoFe($50\AA$)/Al ($13\AA$)-O/CoFe($40\AA$)/NiFe($400\AA$)/Ta(50$\AA$) structure which has 100$\times$100 $\mu\textrm{m}^2$ junction area on $2.5\Times2.5 cm^{2}$ $Si/SiO_2$ ($1000\AA$) substrates by a inductively coupled plasma(ICP) magnetron sputter. We fabricated the insulating layer using a ICP plasma oxidation method by varying oxidation time from 80 sec to 360 sec, and measured resistances and magnetoresistance(MR) ratios of TMR devices. We used a high resolution transmission electron microscope(HRTEM) to investigate microstructural evolution of insulating layer. The average resistance of devices increased from 16.38 $\Omega$ to 1018 $\Omega$ while MR ratio decreased from 30.31 %(25.18 %) to 15.01 %(14.97 %) as oxidation time increased from 80 sec to 360 sec. The values in brackets are calculated values considering geometry effect. By comparing cross-sectional TEM images of 220 sec and 360 sec-oxidation time, we found that insulating layer of 360 sec-oxidized was 30 % and 40% greater than that of 150 sec-oxidized in thickness and thickness variation, respectively. Therefore, we assumed that increase of thickness variation with oxidation time is major reason of MR decrease. The resistance of 80 sec-oxidized specimen was 160 k$\Omega$$\mu\textrm{m}^2$ which is appropriate for industrial needs of magnetic random access memory(MRAM) application.

Keywords

References

  1. M. Julliere, Phys. Lett., 54A, 225 (1975)
  2. J. C. Slonczewski, Phys. Rev. B39, 6995 (1989) https://doi.org/10.1103/PhysRevB.39.6995
  3. J. S. Moodera, L. R. Kinder, T. M. Wong, and R. Meservey, Phys. Rev. Lett., 74, 3273(1995) https://doi.org/10.1103/PhysRevLett.74.3273
  4. T. Miyazaki and N. Tezuka, J. Magn. Magn. Mater., 139, L231 (1995)
  5. W. J. Gallapher, S. S. P. Parkin, Yu. Lu, X. P. Bian, Am Marley, K. P. R. A. Altman, S. A. Rishton, C. Jahres, T. M. Shaw and Gang Xiao, J. Appl. Phys., 81, 3741 (1997)
  6. J. S. Moodera, G. Mathon, J. Magn. Magn. Mater., 200, 248(1999) https://doi.org/10.1016/S0304-8853(99)00515-6
  7. P. K. Wong, J. E. Evetts and M. G. Blamire, J. Appl. Phys., 83, 6697 (1998) https://doi.org/10.1063/1.367862
  8. J. S. Moodera, L. R. Kinder, J. Appl. Phys., 79, 4724 (1996) https://doi.org/10.1063/1.361653
  9. J. S. Moodera, E. F. Gallapher, K. Robinson and J. Nowak, Appl. Phys. Lett., 70, 3050(1997) https://doi.org/10.1063/1.118168
  10. M. Sato, H. Kikuchi and K. Kobayashi, J. Appl. Phys., 83,6691(1998) https://doi.org/10.1063/1.367933
  11. S. Gider, B. U. Runge, A. C. Marley and S. S. P. Parkin, Science, 281,797(1998) https://doi.org/10.1126/science.281.5378.797
  12. J. Appl. Phys., K. P. Cheung and C. P. Chang 75(9), 4415(1994)
  13. J. Sugawara, E. Nakashio, S. Kumagai, J. Honda, Y. Ikeda, T. Miyazaki, J. Magn. Soc. Jpn., 23(4), 1281 (1999) https://doi.org/10.3379/jmsjmag.23.1281
  14. J. S. Moodera, L. R. Kinder, J. Nowak, P. LeClair, and R. Meservey, Appl. Phys. Lett. 69(5), 708(1996) https://doi.org/10.1063/1.117814
  15. R. J. Pederson and F. L. Vernon, Jr., Appl. Phys. Lett. 10,29(1967) https://doi.org/10.1063/1.1754793
  16. T. Miyazaki, J. Magn. Soc. Jap., 25(4), 471 (2001)
  17. H. Kyung, H. S. Ahn, C. S. Yoon, C. K. Kim, Ohsung Song, T. Miyazaki, Y. Ando, and H. Kubota, J. Appl. Phys, 89(5), 2752(2001)