Microstructure and Electrical Properties of Vanadium-doped ${Bi_4}{Ti_3}{O_{12}}$ Thin Films Prepared by Sol-gel Method

졸-겔법으로 성장시킨 바나듐이 도핑된 ${Bi_4}{Ti_3}{O_{12}}$ 박막의 미세구조 및 전기적 특성

  • 김종국 (기초과학연구소) ;
  • 김상수 (창원대학교 물리학과) ;
  • 최은경 (창원대학교 물리학과) ;
  • 김진흥 (기초과학연구소, 화공시스템공학과) ;
  • 송태권 (기초과학연구소, 세라믹공학과) ;
  • 김인성 (한국기계연구원 전기재료부)
  • Published : 2001.11.01

Abstract

$Bi_{3.99}Ti_{2.97}V_{0.03}O_{12}$ (BTV) thin films with 3 mol% vanadium doping were Prepared on $Pt/Ti/SiO_2/Si$ substrate by sol-gel method. X-ray diffraction analysis indicated that single-phase layered perovskite were obtained and preferred orientation was not observed. Under the annealing temperature at $600^{\circ}C$, the surface morphology of the BTV thin films had fine-rounded particles and then changed plate-like at $650^{\circ}C$ and $700^{\circ}C$. The remanent polarization $(2P_r)$ and coercive field $(2E_c)$ of $700^{\circ}C$ annealed BTV thin film were 25 $\mu$C/cm$^2$ and 116 kV/cm, respectively. In addition, BTV thin film showed little polarization fatigue during $10_9$ switching cycles. These improved ferroelectric properties were attributed to the increased rattling space and reduced oxygen vacancies by substitution $Ti^{4+}$ ion (68 pm) with smaller $V^{5+}$ ion (59 pm). The dielectric constant and loss were measured 130 and 0.03 at 10 kHz, respectively.

Keywords

References

  1. M.J. Forbess, S. Seraji, Y. Wu, C.P. Nguyen and G.Z. Cao, Appl. Phys. Lett., 76, 2934 (2000) https://doi.org/10.1063/1.126521
  2. T. Mihara, H. Watanabe and C.A. Paz de Araujo, Jpn. J. Appl. Phys., 32, 4168 (1993) https://doi.org/10.1143/JJAP.32.4168
  3. H.M. Kuiker, P.D. Cuchiaro and L.D. McMillan, Jpn. J. Appl. Phys., 68, 5787 (1990)
  4. H. Watanabe and T. Mihara, Jpn, J. Appl. Phys., Part 1 34, 5240 (1995)
  5. H.N. Al-Shareef, D. Dimos, T.J. Boyel, W.L. Warren and B.A. Tuttle, Appl. Phys. Lett., 68, 690 (1995) https://doi.org/10.1063/1.116593
  6. T.J. Boyle, C.D. Buchheit, M.A. Rodriguez, H.N. Al-Shareef, B.A. Hernandez, B. Scott and J.W. Ziller, J. Mater. Res., 11, 2274 (1996)
  7. H. Gu, C. Dong, P. Chen. D. Bao, A. Kuang and X. Li, J. Crystal Growth, 186, 403 (1998) https://doi.org/10.1016/S0022-0248(97)00508-3
  8. X. Du and I. Chen, J. Am. Ceram. Soc., 81, 3253 (1998)
  9. S.E. Cummins and L.E. Cross, J. Appl. Phys., 39, 2268 (1968) https://doi.org/10.1063/1.1656542
  10. B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, and W. Jo, Nature (London), 401, 682 (1999) https://doi.org/10.1038/44352
  11. Y. Noguchi, M. Miyayama, Appl. Phys. Lett., 78, 1903 (2001) https://doi.org/10.1063/1.1357215
  12. Y. Wu and G. Cao, J. Mater. Sci. Lett., 19, 267 (2000) https://doi.org/10.1023/A:1006735422928
  13. W.L. Warren, B.A. tuttle, and D. dimos, Appl. Phys. Lett., 67, 1426 (1995)
  14. D. Dimos, H.N. Al-Shareef, W.L. Warren, and B.A. Tuttle, J. Appl. Phys., 80, 1682 (1996) https://doi.org/10.1063/1.362968
  15. B.H. Park, S.J. Hyun, S.D. Bu and T.W. Noh, Appl. Phys. Lett., 74, 1907 (1999) https://doi.org/10.1063/1.123709
  16. T. Friessnegg, S. Aggarwal, R. Ramesh, B. Nielsen, E.H. Poindexter and D.J. Keeble, Appl. Phys. Lett., 77, 127 (2000) https://doi.org/10.1063/1.126898
  17. R. Waser, T. Baiatu, and K.H. Hardtl, J. Am. Ceram. Soc., 73, 1645 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb09809.x