Study on Magnetic Property Enhancement of Metal Powders for Magnetic Tape by Using Ultrasonic Dispersion

자기테이프용 Metal Powder의 초음파 분산에 의한 자기적 특성 향상에 관한 연구

  • Kim, Chang-Gon (Dept. of Inorganic Materials Engineering of Pusan National University) ;
  • Choe, Hyeon-Seung (Dept. of Inorganic Materials Engineering of Pusan National University) ;
  • Jang, Hak-Jin (Dept. of Inorganic Materials Engineering of Pusan National University) ;
  • Yun, Seok-Yeong (Dept. of Inorganic Materials Engineering of Pusan National University) ;
  • Kim, Tae-Ok (Dept. of Inorganic Materials Engineering of Pusan National University)
  • 김창곤 (부산대학교 공과대학 무기재료공학과) ;
  • 최현승 (부산대학교 공과대학 무기재료공학과) ;
  • 장학진 (부산대학교 공과대학 무기재료공학과) ;
  • 윤석영 (부산대학교 공과대학 무기재료공학과) ;
  • 김태옥 (부산대학교 공과대학 무기재료공학과)
  • Published : 2001.11.01

Abstract

It was investigated the effect of ultrasonic treatment on magnetic property of ultra fine magnetic Fe powders ($\alpha$-Fe) for magnetic tape. The properties were characterized with vibrating sample magnetometer (VSM), particle size analyzer (PSA) and scanning electron microscope (SEM). At 4hours ultrasonic treatment of 70 kHz, magnetic properties such as squareness ratio (S.Q. : 0.8868), orientation ratio (O.R. : 2.45) and switching field distribution (S.F. D. : 0.394) before taping were relatively enhanced. Cumulative particle size distribution of less than 5$\mu\textrm{m}$ fine powder was above 90% below 1 hour leaving time after ultrasonic treatment and it was supposed that ultrasonic treatment prevent aggregation. The magnetic values of S.Q. and S.F.D. of tape manufactured at 70 kHz and 4hour ultrasonic treatment were improved from 0.7747, 0.3818 to 0.8037, 0.3706, respectively. Electro-magnetic property used as in-output signal characteristic was improved, which showed that ultrasonic treatment developed the magnetic properties.

Keywords

References

  1. M. Camras, Magnetic Recoarding Handbook, Van Nostrand Reinhold Company (1988)
  2. F. Jorgensen, The Complete Handbook of Magnetic Recording, McGraw-Hill (1996)
  3. C.B. Kim, Proseedings of the 5th applied physics symposium on the magnetic materials and applications, Korean Physical Society, 115 (1990)
  4. A. Goldman, Handbook of Modern Ferromagnetic Materials, Kluwer Academic Publishers (1999)
  5. K. Tagawa, M. Matsunaga, K. Ohshima, M. Hiramatsu, T. Ishibashi and J. Mikami, IEEE Trans. Magn., 22, 729 (1986) https://doi.org/10.1109/TMAG.1986.1064324
  6. Y. Tateno, J. Magn. Magn. Mater. 231, 347 (2000) https://doi.org/10.1016/S0304-8853(01)00157-3
  7. S. Aoyama, M. Kishimoto, IEEE Trans. Magn., 27, 791 (1991) https://doi.org/10.1109/20.133293
  8. M. Kishimoto, S. Kitahata and M. Amemiya, IEEE Trans. Magn., 22, 732 (1986) https://doi.org/10.1109/TMAG.1986.1064554
  9. J. Chen, D.E. Nikels, IEEE Trans. Magn., 32, 4478 (1996) https://doi.org/10.1109/20.538903
  10. J.J. Newman, IEEE Trans. Magn., 14, 886 (1778)
  11. M.C.A. Mathur, G.F. Hudson, R.J. Martin, W.A. Mckinley, L.D. Hackett, IEEE Trans. Magn., 27, 4675 (1991) https://doi.org/10.1109/20.278913
  12. W.G. Peng, S.S. Wong, Y.S. Lin, C.D. Wu, IEEE Trans. Magn., 28, 2377 (1992) https://doi.org/10.1109/20.179497
  13. J.H. Kim and K.H. Kim, J. Kor. Mag. Soc., 6, 21 (1996)
  14. J.H. Kim and K.H. Kim, J. Kor. Mag. Soc., 6, 28 (1996)
  15. Y.H. Kim, Magnetism and Magnetic Materials, Pearson Education Korea (1997)
  16. S. M. Kim, T. O. Kim, J. Kor. Mag. Soc., 6, 334 (1996)
  17. Y. Honda, Y. Hirayama, N. Inaba, K. Ito, M. Futamoto, IEEE Trans. Magn., 35, 2682 (1999) https://doi.org/10.1109/20.800948
  18. J.A. Reed, Principle of Ceramic Processing, John wiley & Sons (1995)
  19. H. Auweter, H. Jachow, H. Jakusch, E. Schwab, and R. J. Veitch, IEEE Trans. Magn., 27, 4669 (1991) https://doi.org/10.1109/20.278911
  20. S.M. Kim, T.O. Kim, H.G. Sin, W.S. Yeo, J. Kor. Mag. Soc., 7, 314 (1997)
  21. R.J. Veitch, E. Held, H. Jakusch, R. K. rner, IEEE Trans. Magn., 29, 3637 (1993)
  22. N. Kodama, J. Magn. Magn. Mater., 224, 113 (2001) https://doi.org/10.1016/S0304-8853(00)01352-4