Effect of the Degree of Cold Working on the Microstructures for TiNi/6061Al Composites by Permanent mold Casting

금형주조법에 의한 TiNi/6061Al 복합재료의 미세조직에 미치는 냉간가공도의 영향

  • Park, Seong-Gi (Division of Metallurgical and Mterial, and Chemical Engineering Dong-A University) ;
  • Sin, Sun-Gi (Division of Metallurgical and Mterial, and Chemical Engineering Dong-A University) ;
  • Park, Gwang-Hun (Division of Metallurgical and Mterial, and Chemical Engineering Dong-A University) ;
  • Seong, Jang-Hyeon (Division of Metallurgical and Mterial, and Chemical Engineering Dong-A University) ;
  • Park, Yeong-Cheol (Pivision of Mechanical Engineering Dong-A University) ;
  • Lee, Gyu-Chang (Research Institute of Industrial Science and Technology) ;
  • Lee, Jun-Hui (Division of Metallurgical and Mterial, and Chemical Engineering Dong-A University)
  • 박성기 (동아대학교 재료금속.화학공학부) ;
  • 신순기 (동아대학교 재료금속.화학공학부) ;
  • 박광훈 (동아대학교 재료금속.화학공학부) ;
  • 성장현 (동아대학교 재료금속.화학공학부) ;
  • 박영철 (동아대학교 기계공학과) ;
  • 이규창 (포항산업과학연구원) ;
  • 이준희 (동아대학교 재료금속.화학공학부)
  • Published : 2001.12.01

Abstract

The 2.5 vol% TiNi/6061Al composites were fabricated by permanent mold casting. The microstructures and tensile test for the cold rolled composites with maximum 50% reduction ratio were investigated. In the case of TiNi fiber with 2mm interval in preform, the interface bonding of fabricated composites were good, interface diffusion layer of this composites was made by the mutual diffusion. Transverse section of TiNi fiber was decreased with increasing reduction ratio and longitudinal section of TiNi fiber showed multiple wave phenomenon. And the tensile strength of composites at 38% reduction ratio was the most high. In the case of over 38% reduction ratio, the decrease of the tensile strength was due to TiNi fiber rupture by excess working. The fracture mode was appeared brittle fracture with increasing reduction ratio.

Keywords

References

  1. D.L. Mc Danel, Metall, Trans., 16A, 105 (1985)
  2. J.M. Papazian and P.N. Adler, Meta. Trans., 21A, 401 (1990)
  3. H.K. Kang, J.H. Lee and S.K. Kim, J. KFS, 18(1), 69 (1998)
  4. Jintao Wang, Mimoru Furukawa and Zenji Hirora, Metalllurgical. and Materials. Transactions, A, 26A, 581 (1995) https://doi.org/10.1007/BF02663907
  5. M. Taya, A. Shimanoto and Y.Furuya, Proc. ICCM-10, Whistler, B.C., Canada, 1995, P. V275-V282 (1995)
  6. W.D. Armstrong, J. Intell. Mater. Systems Struct., 7, 448 (1996)
  7. K. Mizuuchi, K. Inoue, M. Sugioka and M. Itami, 9th CIMTEC-World Forum on New Materials SymposiumⅧ-Smart Materials Systems P. Vincenzini(Editer) OTechna Srl. 1999
  8. J.G. Boyd and D.C. Lagoudas, J. Intell Master. Systems Struct., 5, 333 (1994) https://doi.org/10.1177/1045389X9400500306
  9. E.A. Rogers, E.S.Chen and A.F. Findies, Int. Workshop in Intell. Mater. Scientific Information (1989)
  10. S.K. Kim, J.H. Lee, D.P. Yun, Y.C. Park and G.C. Lee, J. KFS, 18(6), 534 (1998)
  11. S.K. Kim and J.H. Lee, Kor. J. Mater. Res., 9(4), 419 (1999)
  12. B.S. Kim, Y.S. Cho, I.D. Choi, D.M. An, K.M. Cho and I.M. Park, J. Kor. Inst. Met. and Mater., 35(10), 1359 (1997)
  13. B.S. Kim, C.H. Han, I.D. Choi, I.M. park and D.M. An, J. Kor. Inst. Met. and Mater., 36(8), 469 (1998)
  14. Y.C. Park, D.P. Yun, S.C. Heo, G.C. Lee and G.C. Lee, Y. Furuya, J. Kor. Inst. Met. and Mater., 35(1), 96 (1997)
  15. K. Hamada, J. H. Lee, K. Mizuuchi, M. Taya, and K. Inoue, Meterials Transactions, A, March, 1127 (1998) https://doi.org/10.1007/s11661-998-0305-9
  16. J.H. Lee, K. Hamada, M. Taya, K. Inoue, C.S. Park and S.K. Kim, J. Kor. J. Mayer. Res., 7(11), 951 (1997)
  17. Y. Furuya, H.Yaguchi, M. Saito, M. Taya and R. Watanabe, International Symposium on smart structural system March19, (1997)
  18. K. Mizuuchi, K. Inoue, K. Hamada, M. Sugioka, M. Itami, Y. Okanda, and Kawahara, Glasgow June 2000
  19. Y. Furuya, A. Sasaki and M. Taya, Mater. Trans., JIM. 34-3, 224 (1993)
  20. J.J. Kim, M.S. Yoo and N.J. Kim, J. Kor, Inst. Met. and Mater, 38(6), 790 (2000)
  21. M.K. Cheol, Dong-A University Doctor thesis (1993)