Mechanical Properties of HfN/Si$_3$N$_4$and NbN/$Si_3N_4$Multilayer Coatings

HfN/Si$_3$N$_4$와 NbN/$Si_3N_4$다층박막의 기계적 특성

  • Jeong, Jin-Jung (Department of Metallurgical Engineering, Inha University) ;
  • Hwang, Seon-Geun (Department of Metallurgical Engineering, Inha University) ;
  • Lee, Jong-Mu (Department of Metallurgical Engineering, Inha University)
  • 정진중 (인하대학교 공과대학 금속공학과) ;
  • 황선근 (인하대학교 공과대학 금속공학과) ;
  • 이종무 (인하대학교 공과대학 금속공학과)
  • Published : 2001.03.01

Abstract

HfN/Si$_3$N$_4$and NbN/Si$_3$N$_4$ multilayer coatings were deposited onto a high speed tool steel substrate by reactive sputtering and their mechanical properties were evaluated in terms of the dependence of hardness and adhesion strength on the sputter deposition process parameters. The hardnesses of both HfN/Si$_3$N$_4$and NbN/Si$_3$N$_4$ multiplayer coatings increase up to the flux ratio of 0.4 but nearly do not change after that as the $N_2$/Ar flux ratio in nitride sputter deposition increases. The hardnesses of both multiplayer coatings nearly do not change with annealing at low temperatures but decrease owing to oxidation with annealing at a high temperature like 80$0^{\circ}C$ after depositing the layers by sputtering. Post-annealing at low temperatures increases the adhesion strength of the multilayers. but high temperature annealing is not desirable since it decreases the adhesion strength besides the hardness deterioration.

고속도 공구강 기판에 반응성 스퍼터링법으로 증착된 HfN/Si$_3$N$_4$와 NbN/Si$_3$N$_4$다층박막의 기계적인 성질들을 막 증착 조건에 따라 평가하였다. HfN/Si$_3$N$_4$와 NbN/Si$_3$N$_4$ 다층박막의 강도는 $N_2$/Ar비가 0.4일 때가지 증가하다가 유량비가 증가함에 따라 더 이상 증가하지 않았다. 두 다층박막의 강도는 낮은 온도에서의 열처리에 의해서는 거의 변화가 업지만 80$0^{\circ}C$ 정도의 고온에서는 열처리에 의한 산화로 인하여 감소하였다. 낮은 온도에서의 열처리는 밀착성을 향상시키는 반면 고온에서의 열처리는 강도의 감소 이외에 밀착성이 감소하므로 바람직하지 못하다.

Keywords

References

  1. Kathleen Mills (eds.) : Metal Handbook, vol. 9, pp. 136, 1985
  2. J.E. Sundgren and L. Hultman, Growth, Structher and properties of hard nitride based coatings and multilayers in Y. Pauleau (eds.) : Materials and Processes for Surface and Interface Engineering, Kluwer Academic Publishers, 1995
  3. Sundgren J.-E., Birch J., H kansson G., Hultman L., and Helmersson U., Thin Solid Films, 193/194, 818 (1990) https://doi.org/10.1016/0040-6090(90)90235-6?
  4. Barnett S.A., Depostion and mechanical properties of superlattice thin filmsin M. H Francombe and J. L. Vossen (eds.) : Physics of Thin Films Mechanical and Dielectric Properties, vol. 17, Academic Press San Diego, 1993, pp.2-75
  5. Helmersson U., Todorova S., Barnett S.A, Sundgren J.-E., Market L.C., and Greene J.E., J. Appl. Phys. 62, 481 (1987) https://doi.org/10.1063/1.339770
  6. Shinn M., Hultman L., and Barnett S.A., J. Mater. Res. 7, 901 (1992) https://doi.org/10.1557/JMR.1992.0901
  7. Mirkarimi P.B., Barnett S.A., Hubbard K.M., Jervis T.R., and Hultman L., J. Mater. Res. 9, 1456 (1994) https://doi.org/10.1557/JMR.1994.1456
  8. Chu X., Wong M.S., Sproul W.D., Rohde S.L., and Barnett S.A., J. Vac. Sci. Technol. A 10, 1604 (1992) https://doi.org/10.1116/1.578030
  9. S. Veprek, S. Reiprich, Thin Solid Films 268, 64 (1995) https://doi.org/10.1016/0040-6090(95)06695-0