Basal slip (0001)1/3<1120> dislocation in sapphire ($\alpha$-Al$_2$O$_3$) single crystals Part I : recombination motion

사파이어($\alpha$-Al$_2$O$_3$) 단결정에 있어 basal slip (0001)1/3<1120>전위 Part I : 재결합거동

  • Yoon, Seog-Young (Department of Inorganic Materials Engineering, Pusan National University)
  • Published : 2001.04.01

Abstract

The recombination motion of Partial dislocations on basal slip (0001) 1/3<1120> in sapphire ($\alpha$-Al$_2$$O_3$) single crystals was investigated using the four-point bending test with the prism plane (1120) samples. These bending experiments were carried but in the temperature range from $1200^{\circ}C$ to $1400^{\circ}C$ at various engineering stresses 90MPa, 120MPa, and 150MPa. During these tests it was shown that an incubation time was needed for basal slip to be activated. The activation energy for the incubation time was 5.6-6.0eV in the temperature range from $1200^{\circ}C$ to $1400^{\circ}C$. The incubation time is believed to be related to recombination of climb dissociated partial dislocations via self-climb. In addition, these activation energies are nearly same as those for oxygen self-diffusion in $Al_2$$O_3$ (approximately 6.3 eV). Thus, the recombination of the two partial dislocations would be possibly controlled by oxygen diffusion on the stacking fault between the partials.

사파이어($\alpha$-$Al_2$$O_3$) 단결정에 있어 basal slip (0001)1/3<1120>의 부분전위의 재결합거동을 알아보기 위해 prism plane (1120)의 사파이어 재료를 사용하여 4점 곡강도 시험을 행하였다. 이 굽힘시험은 온도 $1200^{\circ}C$~$1400^{\circ}C$에서 그리고 응력은 90MPa, 120MPa, 150MPa에서 행하여졌다 굽힘시험 동안 basal전위가 이동하기 위해 잠복기가 필요하였다. 실험온도 범위내에서 잠복기의 활성화에너지는 5.6-6.0eV이었으며, 이 잠복기는 자체-상승운동으로 분해된 부분전위들이 재결합하는데 필요한 시간인 것으로 추정되었다. 한편, 이 활성화에너지는 $Al_2$$O_3$에 있어 산소의 자체 확산을 위한 에너지 (대fir 6.3eV)와 거의 일치하였다. 이 결과를 통하여, 두 부분전위들의 재결합은 부분전위사이 적층결함으로 산소 자체확산에 의해 제어되는 것으로 여겨진다.

Keywords

References

  1. M.L.Kronberg, Acta Metall.,. 5[9], 507 (1957) https://doi.org/10.1016/0001-6160(57)90090-1
  2. J.B.Wachtman and L.H.Maxwell, J. Am. Ceram. Soc., 437 [7], 291 (1954) https://doi.org/10.1111/j.1151-2916.1954.tb14041.x
  3. T.E.Mitchell, K.P.D.Lagerlof, and A.H.Heuer, 'Dislocations in Ceramics,' in Materials Science and Technology, Vol.1, pp.349-358 (1985)
  4. J.B.Wachtman and L.H.Maxwell, J. Am. Ceram. Soc, 40[11], 377 (1957) https://doi.org/10.1111/j.1151-2916.1957.tb12557.x
  5. M.L.Kronberg, J. Am. Ceram. Soc, 45[6], 274 (1962) https://doi.org/10.1111/j.1151-2916.1962.tb11143.x
  6. R.F.Firestone and A.H.Heuer, J. Am. Ceram. Soc, 56[3], 136 (1973) https://doi.org/10.1111/j.1151-2916.1973.tb15429.x
  7. H.Conrad, G .Stone, and K.Janowski, Trans. AIME, 233[5], 889 (1965)
  8. K.CRadford and P.L.Pratt, Proc. Brit. Ceram. Soc, No.15, 185 (1970)
  9. M.V.Klassen-Neklyudova, V.G.Govorkov, A.A. Urusovskaya, N.N.Voinova, and E.P.Kozkovsskaya, Phys. Status Solidi, 39 [2], 679 (1970) https://doi.org/10.1002/pssb.19700390236
  10. W.G.Johnston and J.J.Gilman, J. Appl. Phys., 30 [2], 129-44 (1959) https://doi.org/10.1063/1.1735121
  11. H.Conrad, 'Yielding and Flow of Iron,' pp.315 in Iron and Its Dilute Solid Solutions. Edited by C.W. Spencer and F.E.Werner. Interscience Publishers, Inc., New York, 1963
  12. G.T.Hahn, Acta Metall., 10 [8], 727 (1962) https://doi.org/10.1016/0001-6160(62)90041-X
  13. B.J.Pletka, T.E.Mitchell, and A.H.Heuer, J. Am. Ceram. Soc, 57 [9], 388 (1974) https://doi.org/10.1111/j.1151-2916.1974.tb11419.x
  14. K.P.D.Lagerloof, B.J.Pletka, T.E.Mitchell, and A. H.Heuer, Radiation Effects, 74, 87 (1983) https://doi.org/10.1080/00337578308218402
  15. T.E.Mitchell, B.J.Pletka, D.S.Phillips, and A.H. Heuer, Phil. Mag., 34, 441 (1976) https://doi.org/10.1080/14786437608222034
  16. K.P.D.Lagerlof, T.E.Mitchell, and A.H.Heuer, Acta Metall., 32[1], 99 (1984) https://doi.org/10.1016/0001-6160(84)90206-2
  17. S.Timoshenko, 'Theory of Elasticity,' pp.319 (McGrow-Hill) (1961)
  18. D.G.Howitt and T.E.Mitchell, Phil. Mag. A, 44 [1], 229-38 (1981) https://doi.org/10.1080/01418618108244504
  19. P.R.Kenway, Phil. Mag., B, 68 [2], 171-83 (1993) https://doi.org/10.1080/01418639308226398
  20. J.P.Hirth and J.Lothe, 'Theory of Dislocations,' pp. 91-92, pp.555-559 (New York:McGraw-Hill) (1972)
  21. R.Bullough and R.C.Newman, Phil. Mag., 7, 529 (1962) https://doi.org/10.1080/14786436208212186
  22. K.P.D.Lagerlof, T.E.Mitchell, and A.H.Heuer, 'TEM of Climb-Dissociated Dislocations in Sapphire,' 40th Ann. Proc. Electron Microscopy Soc. Amer. Washington, D.C., 1982
  23. K.P.D.Lagerlof: Ph.D Dissertation, Case Western Reserve University, Cleveland, OH, May 1984
  24. J.D. Cawley: Ph.D Dissertation, Case Western Reserve University, Cleveland, OH, May 1984