Wetting improvement of SiC/Al Metal Matrix Composite by Cu Surface Treatment

보강재에 도금된 Cu층이 Al/SiC복합재료의 젖음성에 미치는 영향

  • 이경구 (한려대학교 신소재공학과) ;
  • 조규종 (전남대학교 공과대학 자동차공학과) ;
  • 이도재 (전남대학교 공과대학 자동차공학과)
  • Published : 2001.05.01

Abstract

Effects of coating treatment of metallic Cu film on SiC for Al/SiC composite were studied. The Copper was deposited on SiC by electroless plating method. Al/sic composite was fabricated at temperature range of $670^{\circ}C$ to 90$0^{\circ}C$ under vacuum atmosphere. The wetting behavior of Al/SiC composite were analysed by SEM and XRD. The coating treatment on SiC improved wettability of Al melt on SiC considerably comparing to the non coated SiC. This improved wettability seems strongly concerned to the increase of chemical reactivity between coated layer and Al matrix. The improvement of wettability of Al melt on the Cu coated SiC was closely related to in the initial stage of reaction. The metallic film played an important role in reducing the interfacial free energy and breaking down the aluminum oxide film through the reaction with Al melt. The wetting behavior of the as-received SiC with Al melt was not uniform, indicated by the contact angles from less than $97^{\circ}$to more than $97^{\circ}$.

SiC 보강재 표면에 도금된 Cu금속층이 Al/SiC복합재료의 젖음성에 미치는 영향을 검토하였다. 보강재에 대한 금속층의 도금은 무전해도금법을 이용하였으며, Al/SiC 복합재료의 제조는 텅스텐 발열체 진공로의$ 670^{\circ}C$~$900^{\circ}C$에서 제조하여 보강재와 기지간의 접촉부위를 촬영하여 젖음성을 측정하였다 젖음성 측정 결과 보강재에 도금된 Cu층은 젖음성을 향상시켰고, 젖음성의 개선은 보강재에 도금된 금속층과 기지간의 반응에 의해 계면에너지를 변화시킴으로서 나타난 결과이며. 반응을 통한 산화피막의 배제도 영향을 미친 것으로 판단된다

Keywords

References

  1. T.Suganuma and A.Tanaka, Tetsu-to Hagane, 75, 1790 (1989)
  2. P.Rohati, Mordern Casting, 4, 47 (1988)
  3. A.Okura, J. Jap, Compos. Mater. Soc., 11, 204 (1985)
  4. M.Shimbo, M.Naka and I.Okamoto, J. Mater. Sci. Lett., 8, 663 (1989) https://doi.org/10.1007/BF01730435
  5. J.J.Brennan and J.A.Pask, J. Am. Ceram. Soc.,10, 596 (1963)
  6. D.J.Lee, M.D.Vaudin, C.A.Handwerker and U.R. Kattner, Mat. Res. Soc. Symp, Proc., 120, 357 (1988)
  7. S.R.Nutt, in 'Interface in Metal Matrix Composite' (ed, by A.K.Dhingra and S.C.Fishman), The Metal. Soc. of AIME, 157 (1986)
  8. A.Miyase and K.Oiekarski, Mat. Sci., 16, 251 (1981) https://doi.org/10.1007/BF00552078
  9. Y .Kimura, J. of Mat. Sci., 19, 3107 (1984) https://doi.org/10.1007/BF01026990
  10. S.Abraham, B.C.Pai and K.G.Satyanarayana, J. of mater. Sci., 27, 3479 (1992) https://doi.org/10.1007/BF01151823
  11. S.Abraham. B.C.Pai, K.G.Satyanarayana and V.K. Vaidyan, J. of mater. Sci., 25, 2839 (1990) https://doi.org/10.1007/BF00584890
  12. E.Nakada, Y.Kakawa and H.Tera, J. Jpn. Soc. Compo. Met., 3, 115 (1983)
  13. S.G.Warrier, C.A.Blue and R.Y.Lin, J. of Mater. Sci. 28,760 (1993) https://doi.org/10.1007/BF01151253
  14. J.P.Ladin et al., J. Electrochem. Soc., May, 442 (1967)
  15. V.Laurent, D.Chatain and NiEustathopoulos, J. Mater. Sci, 22, 4 (1987) https://doi.org/10.1007/BF01160579
  16. R.Warren and C.H.Anderson, Composite, 15, 101 (1983) https://doi.org/10.1016/0010-4361(84)90721-3
  17. J.J.Brennan and J.A.Pask, J. A mer. Ceram. Soc., 51, 569 (1968)
  18. T.Iseki, T.Kameda and T.Maruyama, J. Mater. Sci, 19, 1692 (1984) https://doi.org/10.1007/BF00563067
  19. A.Seherer, O.T.Inal and R.B.Pettit, J. Mater. Sci, 23. 1934 (1988) https://doi.org/10.1007/BF01115753
  20. M.Shimbo, M.Naka and I.Okamoto, J.Mater.Sci. Lett., 8, 663 (1089) https://doi.org/10.1007/BF01730435
  21. D.A.Weirauch,Jr., J. Mater. Res., 3, 729 (1988) https://doi.org/10.1557/JMR.1988.0729
  22. S.R.Nutt and F.E.Waener, J. Mater, Sci., 20, 1953 (1985) https://doi.org/10.1007/BF01112277
  23. L.F.Mondolfo, Aluminum Alloys: Structure and Properties, Butterworths, London, 311 (1976)
  24. S.D.Peteves and P.Tambuyser, J. Mater. Sci., 25, 3766 (1990) https://doi.org/10.1007/BF00575416