Growth and Characterization of AgGa$Se_2$ Single Crystal Thin Films by Hot Wall Epitaxy

Hot Wall Epitaxy (HWE)법에 의한 AgGa$Se_2$ 단결정 박막 성장과 특성

  • Published : 2001.05.01

Abstract

The stochiometric $AgGaSe_2$ polycrystalline mixture of evaporating materials for the $AgGaSe_2$ single crystal thin film was prepared from horizontal furnace. To obtain the single crystal thin films, $AgGaSe_2$ mixed crystal and semi-insulating GaAs(100) wafer were used as source material and substrate for the Hot Wall Epitaxy (HWE) system, respectively. The source and substrate temperature were fixed at$ 630^{\circ}C$ and $420^{\circ}C$, respectively. The thickness of grown single crystal thin films is 2.1$\mu\textrm{m}$. The single crystal thin films were investigated by photoluminescence and double crystal X-ray diffraction(DCXD) measurement. The carrier density and mobility of AgGaSe$_2$ single crystal thin films measured from Hall effect by van der Pauw method are $4.89\Times10^{17}$ cm$^{-3}$ , 129cm2/V.s at 293K, respectively. From the Photocurrent spectrum by illumination of perpendicular light on the c-axis of the AgGaSe$_2$ single crystal thin film, we have found that the values of spin orbit splitting $$\Delta$S_{o}$ and the crystal field splitting $\Delta$C$_{r}$, were 0.1762eV and 0.2474eV at 10K, respectively. From the photoluminescence measurement of AgGaSe$_2$ single crystal thin film, we observed free excision (EX) observable only in high quality crystal and neutral bound exciton ($D^{o}$ , X) having very strong peak intensity. And, the full width at half maximum and binding energy of neutral donor bound excition were 8mev and 14.1meV, respectively. By Haynes rule, an activation energy of impurity was 141 meV.ion energy of impurity was 141 meV.

AgGaSe$_2$ 단결정 박막은 수평 전기로에서 합성한 $AgGaSe_2$ 다결정을 증발원으로 하여, hot wall epitaxy (HWE) 방법으로 증발원과 기판 (반절연성-GaAs(100)) 의 온도를 각각 $630^{\circ}C$, $420^{\circ}C$로 고정하여 박막 결정 성장을 하였다. 10K에서 측정한 광발광 excition 스펙트럼과 이중결정 X-선 요동곡선 (DCRC) 의 반치폭 (FWHM )을 분석하여 단결정 박막의 최적 성장 조건을 얻었다. Hall효과는 van der Pauw 방법에 의해 측정되었으며, 온도에 의존하는 운반자 농도와 이동도는 293k에서 각각 4.89$\times$$10^{ 16}$/㎤, 129$\textrm{cm}^2$/V.s였다. 광전류 봉우리의 10K에서 단파장대의 가전자대 갈라짐 (splitting)에 의해서 측정된 $\Delta$C$_{r}$ (crystal field splitting)은 0.1762eV, $$\Delta$S_{o}$ (spin orbit splitting)는 0.2494eV였다 10K의 광발광 측정으로부터 고풍질의 결정에서 볼 수 있는 free excitors과 매우 강한 세기의 중성 주개 bound excitors등의 피크가 관찰되었다. 이때 중성 주개 bound ekciton의 반치폭과 결합에너지는 각각 BmeV와 14.1meV였다. 또한 Haynes rule에 의해 구한 불순물의 활성화 에너지는 141meV였다.rule에 의해 구한 불순물의 활성화 에너지는 141meV였다.

Keywords

References

  1. D. S. Chemla, and R. C. Smith, Opt. Commun., 29 (3) (1971)
  2. R. K. Route, R. S. Feigelson, and R. J. Raymakers, J. Cryst, Growth, 24, pp.390-395 (1974) https://doi.org/10.1016/0022-0248(74)90343-1
  3. I. H. Choi, and S. W. Eom, New Physics, 32 (3), pp. 383-389 (1992)
  4. V. A. Alyer, G. D. Guseinev, F. I. Mamedov, and L. M. Chapanova, Solid State Comm., 59, pp. 345-748 (1986)
  5. H. Kildal, and J. C. Mikkelsen, Optics Commun., 9, pp.315-318 (1973) https://doi.org/10.1016/0030-4018(73)90316-7
  6. R. K. Route, and R. J. Rayrnakers, J. Cryst, Growth, 24, pp. 390-395 (1974) https://doi.org/10.1016/0022-0248(74)90343-1
  7. B. Tell, and H. M. Kasper, Phys. Rev. B, 4(2), pp. 4455-4459 (1971) https://doi.org/10.1103/PhysRevB.4.4455
  8. K. J. Hong, and T. S. Jeong, J. Cryst, Growth, 218, pp. 19-26 (2000) https://doi.org/10.1016/S0022-0248(00)00491-7
  9. K. J. Hong, and T. S. Jeong, J. Cryst. Growth, 172, pp. 89-96 (1997) https://doi.org/10.1016/S0022-0248(96)00725-7
  10. B. D. Cullity, Elements of X -ray Diffractions, chap 11, Caddson- Wesley (1985)
  11. H. Hahn, and G. Storger, Z. Anorg. Chem., Vol. 271, pp. 153-156 (1953) https://doi.org/10.1002/zaac.19532710307
  12. Elizabeth A. wood, Crystal Orientation manual, Columbia university press (1963)
  13. H. Fujita, J. Phys. Soc., Jpn., 20, pp.109-113 (1965) https://doi.org/10.1143/JPSJ.20.109
  14. B. den and R. B. GudPohl, Z. Physik. 3, pp.98-102 (1920) https://doi.org/10.1007/BF01330924
  15. B. Gudden and R. Pohl, Z. Physik. 5, pp.176-179 (1921) https://doi.org/10.1007/BF01329251
  16. R. H. Bube, Photoconductivity of Solids, pp.130-132. Wiley, New York (1960)
  17. Y. P. Varshni, Physica. 34, pp.149-151 (1967)
  18. B. Tell, and J. C. Shay, Phys. Rev. B,6 (8) pp.3008-3012 (1972) https://doi.org/10.1103/PhysRevB.6.3008
  19. J. E. Jaffe, and Alex Zunger, Phvs, Rev. B,29 (4), No.4, pp. 1982-2006 (1984) https://doi.org/10.1103/PhysRevB.29.1982
  20. Boy D, G. D., Kasper, H. M., and McFee, J. Quantum Electro QE7, pp.563-567, (1971)