Properties of ZnS:Cu,Cl Thick Film Electroluminescent Devices by Screen Printing Method

스크린인쇄법에 의한 ZnS:Cu,Cl 후막 전계발광소자의 특성

  • No, Jun-Seo (Dept.of Computer Engineering, Dankook University) ;
  • Yu, Su-Ho (Dept.of Computer Engineering, Dankook University) ;
  • Jang, Ho-Jeong (Dept.of Computer Engineering, Dankook University)
  • Published : 2001.06.01

Abstract

The ZnS:Cu,Cl thick film electroluminescent devices with the stacking type(separated with phosphors and insulator layers) and the composite type (mixed with phosphor and insulator materials) emission layers were fabricated on ITO/glass substrates by the screen printing methods. The opical and electrical properties were investigated as fundations of applied voltages and frequencies. In the stacking type, the luminance was about 58 cd/$\m^2$ at the applied voltage of 400Hz, 200V and increased to 420 cd/$\m^2$ with increasing the frequency to 30Hz. For the composite type devices, the threshold voltage was 45V and the maximum luminance was 670 cd/$\m^2$ at the driving condition of 200V, 30Hz. The value of luminance of the composite type device showed 1.5 times higher than that of stacking type device. The main emission peak was 512 nm of bluish-green color at 1Hz frequency below and shifted to 452 nm in the driving frequency over 5Hz showing the blue omission color. There were no distinct differences of the main emission peaks and color coordinate for both samples.

ZnS:Cu,Cl 형광체를 이용하여 ITO/glaas 기판위에 스크린인쇄법으로 적층형과 혼합형 구조로된 2종류의 교류전계 발광소자를 제작한 후 인가전압과 주파수에 따른 광학적, 전기적 특성을 조사, 비교하였다. 적층헝의 경우 발광휘도는 400Hz, 200V 구동전압에서 약 55 cd/$\m^2$를 나타내었다. 인가전압의 주파수를 400Hz에서 30Hz로 증가시킬 경우 휘도는 420 cd/$\m^2$로 크게 향상되었다. 혼합형의 경우 400Hz의 주파수에서 문턱전압은 45V이었고, 200V, 30KHz 주파수의 동작조건에서 최대휘도는 670 cd/$\m^2$ 이었다. 휘도-전압 특성 측정결과 적층형구조 보다 혼합형 소자구조에서 발광강도가 약 1.5배 증가하였다. 주파수에 따른 주발광 파장의 변화는 양쪽시료 모두 유사하게 나타났다. 1KHz이하의 저주파에서는 652 nm의 청녹색 발광과장을 나타내었으며 5KHz이상에서는 452 nm과장의 청색발광을 나타내었다.

Keywords

References

  1. 강원호, 조태환, 장호정. Electronic Display, 1st ed., p. 121, 성안당, (1998)
  2. Y. A. Ono, Electroluminescent Displays, p.123, World Scientific (1995)
  3. G. N. King, in Digest of 3rd ASID 1995 workshop on Information Displays, (1995). p.35
  4. ?G. Destriau, J. Chem. Phys., 33, 587 (1992)
  5. A. Abu-Dayah, s. Kobayashi and J. F. Wagner, Appl. phys. Lett., 62(7), 744 (1993) https://doi.org/10.1063/1.108860
  6. S. Miyata and H. Singh Nalwa, Organic Electroluminescent Materials and Divice, p.289, Gordon and Breach Publishers, (1997)
  7. Y. Yang and A. J. Heeger, Appl. phys. Lett., 64, 1245 (1994) https://doi.org/10.1063/1.110853
  8. P. E. Burrows, V. Bulovic, S. R. Forrest, L. S. Sapochak, D. M. McCarty and M. E. Yhomson, Appl. phys. Lett., 65, 2922 (1994) https://doi.org/10.1063/1.112532
  9. K. Obiyashi, T. Ogura, K. Terada, T. Taniguchi, T. Yamashita, M. Yoshida, and S. Nakajima, Digest of 1991 SID International Symposium (1991), p. 275
  10. E. W. Chase, R. T. Hepplewhite, D. C. Krupka and D. Kahng, J. Appl. Phys., 40 (6), 2512 (1969) https://doi.org/10.1063/1.1658025
  11. W. E. Tiku and G. C. Smith,, IEEE. Trans.ed., 24(7), 903 (1977)
  12. D. Wauters, D. Poleman, R. L. Van Meirhaeghe and F. Cardon, J. Luminescence, 12, 1 (2000) https://doi.org/10.1016/S0022-2313(00)00215-5
  13. Y. A. Ono, Electroluminescent Display, p.36, World Scientific, (1996)