The Effect of Solidification Rate on Solidification Behavior in IN792+Hf Superalloy

IN792+Hf 초내열합금의 응고거동에 미치는 응고속도의 영향

  • Bae, Jae-Sik (Dept.of Metallurgy and Materials Science, Changwon National University) ;
  • Kim, Hyeon-Cheol (Dept.of Metallurgy and Materials Science, Changwon National University) ;
  • Lee, Jae-Hyeon (Dept.of Metallurgy and Materials Science, Changwon National University) ;
  • Yu, Yeong-Su (Materials Processing Deplrtment, Koreo Institute ofMachinerrand Materials) ;
  • Jo, Chang-Yong (Materials Processing Deplrtment, Koreo Institute ofMachinerrand Materials)
  • 배재식 (창원대학교 금속재료공학과) ;
  • 김현철 (창원대학교 금속재료공학과) ;
  • 이재현 (창원대학교 금속재료공학과) ;
  • 유영수 (한국기계연구원 내열재료그룹) ;
  • 조창용 (한국기계연구원 내열재료그룹)
  • Published : 2001.06.01

Abstract

The effect of solidification rate on the microstructure of directionally solidified IN792+ Hf superalloy has been studied. Solidification sequence and precipitation behavior of the alloy have been analysed by microstructural observation. The script carbide transformed to faceted carbide with decreasing solidification rates. The incorporation of ${\gamma}$ phase into the faceted carbide was due to dendritic growth of carbides. Some elongated carbide bars formed along the grain boundaries at a solidification rate of 0.5$\mu\textrm{m}$/s. Two zones, ${\gamma}$' forming elements enriched zone and depleted zone, were found in the residual liquid area. Eutectic ${\gamma}$/${\gamma}$' nucleated in the f forming elements enriched zone. Formation of eutectic ${\gamma}$/${\gamma}$' increased the ratio of (Ti+Hf+Ta+W)/Al and induced η phase precipitation. The ratio of (Ti+Hf+Ta+W)/Al decreased at lower solidification rates due to sufficient back diffusion in the residual liquid area. Hence, the Precipitation of the η Phase efficiently suppressed at the lower solidification rate.

일방향응고법으로 IN792+Hf 초내열합금의 응고속도에 따른 응고거동의 변화에 대해 연구하였다. 조직관찰을 통해 각 상의 응고과정과 석출거동을 분석하였다 일방향응고시 응고속도가 감소하면 문자형의 탄화물은 면상 탄화물로 변화하였고 ${\gamma}$상과 탄화물의 결합은 탄화물의 수지상 성장에 의한 것임을 확인할 수 있었다. 긴 막대형상의 탄화물이 0.5$\mu\textrm{m}$/s의 응고속도에서 입계를 따라 형성되었으며 잔류액상지역에서 ${\gamma}$'형성원소가 풍부한 구역과 고갈된 구역이 발견되었다. 공정 ${\gamma}$/${\gamma}$'은 형성원소가 풍부한 구역에서 핵생성하였으며 공정 ${\gamma}$/${\gamma}$'의 형성은 잔류액상지역의 (Ti+Hf+Ta+W)/Al 비율을 높여 η상의 석출을 유발하였다. 느린 응고속도에서는 잔류액상지역으로부터의 충분한 역확산으로 (Ti+Hf+Ta+W)/Al 비율이 낮아져 η상의 석출이 억제되었다.

Keywords

References

  1. Matthew J. Donachie, Jr. Superalloys Source Book, ASM, 3 (1984)
  2. Heat Resistant Materials, Edited by J. R. Davis, ASM Specialty Handbook, 221, 226 (1997)
  3. Superalloys Ⅱ v.97 no.118 C. T. Sims;N. S. Stoloff;W. C. Hagel
  4. C.T. Sims, N.S. Stoloff, and W.C. Hagel, Superalloys II, 97, 118 (1987)
  5. T.M. Pollock and W.H. Murphy, Metall. Mater. Trans. A 27, 1081 (1996) https://doi.org/10.1007/BF02649777
  6. J. Lecomte-Beckers, Metall. Mater. Trans. A 19, 2333 (1988) https://doi.org/10.1007/BF02645057
  7. R. Sellamuthu, H. D. Brody and A.F. Giamei, Metall. Mater. Trans. B 17, 347 (1986)
  8. H. Q. Zhu, Z. Q. Hu, Y. X. Zhu, SR. Guo, H. R. Guan, C. X. Shi, M. Morinaga and Y. Murata, Metall. Mater. Trans. B 26, 831 (1995) https://doi.org/10.1007/BF02651730
  9. V. A. Wills and D.G. McCartney, Mater. Sci. Eng. 145A, 223 (1991) https://doi.org/10.1016/0921-5093(91)90252-I
  10. Z.Q. Hu, W.R. Sun, and S.R. Guo, Acta. Metall. Sin. 9, 443 (1996)
  11. G. K. Bouse, Superalloys1996, edited by R. D. Kissinger, D. J. Deye, D. L. Anton, A. D. Cetel, M. V. Nathal, T. M. Pollock, D. A. Woodford (Minerals, Metals, and Materials Society, Warrendale, PA, 163 (1996)
  12. M. Gell and G. R. Leverant, Trans. Metall. Soc. AIME242. 1869 (1968)
  13. A. Mitchell, A.J Schmalz, C. Schvezov, and S.L. Cockcroft, In Superalloys 718. 625. 706 and Various Derivatives, edited by E.A. Loria (The Minerals. Metals & Materials Society, Warrendale, PA, 65 (1996)
  14. L. Lin, F. Hengzhi, and S. Zheng xing, Scr. Metall. Mater., 50, 587 (1994)
  15. R. Fernandez, J.C. Lecomte, and Z. Kattamis, Metall. Mater. Trans. A 9, 1381 (1978)
  16. S.C. Fegan, T.Z. Kattamis. and J.E. Morral, J. Mater. Sci., 10, 1266 (1975) https://doi.org/10.1007/BF00541420
  17. C. Chuanqi, L. Qijuan, W. Changxin, T. Shifan, J.F. Radavich, Superalloys 1996, edited by R.D. Kissinger, D.J. Deye, D.I. Anton, A.D. Cetel, M.V. Nathal, T.M. Pollock and D.A. Woodford (The Minerals, Metals, and Materials Society, Warrendale, PA, 507 (1996)
  18. P.S. Kotval, J.D. Venables, and R.W. Calder, Metall. Mater. Trans.. A 3, 453 (1972)
  19. J.D. Verhoeven, J.M. Lee, F.C. Leabs, and L.L. Jones, J. Phase Equil. 12 (1), 15 (1991) https://doi.org/10.1007/BF02663666
  20. D.R. Uhlmann and B. Chalmers, J. Appl. Phys. 35, 2986 (1964) https://doi.org/10.1063/1.1713142
  21. L. Liu and H.Z. Fu, Acta metall. Sinica, 25A, 282 (1989)
  22. J. Chen, J.H. Lee, C.Y. Jo, S.J. Chie, Y. T. Lee, Materials Sci. Eng. A 247, 113 (1998) https://doi.org/10.1016/S0921-5093(97)00761-2