The Estimation of Activation Energy for Prism Plane SliP {1120} <1100> Dislocation Velocity in Sapphire Single Crystals using Brittle-to-ductile Transition Model

취성-연성 전이 model을 이용한 사파이어 단결정의 prism plane slip {1120} <1100> 전위속도에 대한 활성화에너지 계산

  • Yun, Seog-Young (Department of Inorganic Materials Engineering, Pusan National University) ;
  • Lee, Jong-Young (Special researcher, Research Institute of Industrial Technology, Pusan National University)
  • 윤석영 (부산대학교 공과대학 무기재료공학과) ;
  • 이종영 (부산대학교 생산기술연구소 특별연구원)
  • Published : 2001.06.01

Abstract

Experimental studies of the brittle-ductile transition (BDT) for pre-cracked sapphire single crystals were carried out. The BDT temperature in sapphire single crystals were $1000\pm$$25^{\circ}C$ and 1100$\pm$$25^{\circ}C$ at constant strain rate 3.3$\times$$10^{-5}$/sec and 3.3$\times$$10^{-6}$/sec, respectively. With aid of the BDT model, the activation energy for prism plane slip {1120} <1100> dislocation velocity was in the range of 4.6$\pm$2.3eV This activation energy for dislocation velocity with BDT model was compatible with the result of the dislocation velocity (3.8eV) using the etch-pit techniques.

사파이어 단결정의 취성-연성전이에 대한 실험을 행하였다. 사파이어 단결정의 취성-연성전이온도는 변형율 3.3$\times$ $10^{-5}$/sec에서 $1000\pm$$25^{\circ}C$ 그리고 변형률 3.3$\times$$10^{-5}$/sec에서는 1100$\pm$26$^{\circ}C$이었다. 취성-연성전이모델을 이용하여 Prism Plane slip {1120} <1100> 전위속도의 활성화에너지를 계산하였으며, 그 결과 활성화에너지는 4.6$\pm$2.3eV의 범위를 가졌다. 이 활성화에너지는 에치-퍼트법을 이용하여 전위속도측정으로부터 구한 결과치 3.8eV와 유사하였다.

Keywords

References

  1. A. Kelly, W.R. Tyson and A.H. Cottrell, Phil. Mag., 15, 567-586 (1967) https://doi.org/10.1080/14786436708220903
  2. J.R.Rice and R.Thomson, Phil. Mag., 29, 73-97 (1974) https://doi.org/10.1080/14786437408213555
  3. I-H. Lin and R.Thomson, Acta Metall. 34, 187-206 (1986) https://doi.org/10.1016/0001-6160(86)90191-4
  4. C. St. John, Phil. Mag., 32, 1193-1212 (1975) https://doi.org/10.1080/14786437508228099
  5. M. Brede and P. Haasen, Acta. Metall., 36, 2003-2018 (1988) https://doi.org/10.1016/0001-6160(88)90302-1
  6. S.Y. Yoon and J.Y. Lee, J. Korean Association of Crystal Growth, 10 [4], 337 (2000)
  7. S.Timoshenko, 'Theory of Elasticity' 3rd. ed., (McGraw-Hill, New York, 1976) p.121
  8. T.Fett, J. Mater. Sci., 19, 672-682 (1984) https://doi.org/10.1007/BF02403255
  9. J.J.Petrovic, J. Am. Ceram. Soc., 66 277-283 (1982) https://doi.org/10.1111/j.1151-2916.1983.tb15714.x
  10. Hyung-Sun Kim and Steve Roberts, J. Am. Ceram. Soc., 77[12], 3099-104 (1994) https://doi.org/10.1111/j.1151-2916.1994.tb04555.x
  11. Iwasa M and Bradt.R.C., Advance in Ceramics, 10, pp.767 (1984)
  12. G. Michot and A. George, Scrip. Metall., 20, 1495 (1986) https://doi.org/10.1016/0036-9748(86)90382-0