Effect of Final Annealing Temperature on Precipitate and Oxidation of Zr- Nb Alloys

Zr-Nb계 합금의 석출물 특성과 산화 특성에 미치는 마지막 열처리 온도의 영향

  • 윤영균 (한국원자력연구소 지르코늄신합금핵연료피복관개발팀) ;
  • 정용환 (한국원자력연구소 지르코늄신합금핵연료피복관개발팀) ;
  • 박상윤 (한국원자력연구소 지르코늄신합금핵연료피복관개발팀) ;
  • 위명용 (충북대학교 공과대학 재료공학과)
  • Published : 2001.08.01

Abstract

Effects of final annealing temperature on the precipitate and oxidation were investigated for the Zr-lNb and Zr-lNb-lSn-0.3Fe alloys. The microstructure and oxidation of both alloys were evaluated for the optimization of final annealing process of these alloys in the annealing temperature regime of 450 to $800^{\circ}C$. The corrosion test was performed under steam at $400^{\circ}C$ for 270 days in a static autoclave. The oxide formed was identified by low angle X-ray diffraction method. The $\beta$-Zr was observed at annealing temperature above $600^{\circ}C$. Above $600^{\circ}C$, the precipitate area volume fraction of Zr-lNb and Zr-1Nb-lSn-0.3Fe alloys appeared to be increased with increasing the final annealing temperature. The corrosion resistance of Zr-lNb was higher than that of Zr- lNb-lSn-0.3Fe alloy. The corrosion rate of both alloys were accelerated due to the formation and growth of $\beta$-Zr with increasing the annealing temperature.

Nb 첨가 Zr합금인 Zr-lNb합금과 Zr-lNb-lSn-0.3Fe함금의 석출물 및 산화 특성에 미치는 마지막 열처리 온도의 영향을 알아보기 위하여 최종 열처리 온도를 $450^{\circ}C$에서 $800^{\circ}C$까지 변화시켜 미세조직 및 산화 특성을 조사하였다. 부식 시험은 $400^{\circ}C$ , 수중기 분위기에서 270 일 동안 실시하였으며 X-선 회절법을 이용하여 산화막 결정 구조를 분석하였다. 마지막 열처리 온도가 $600^{\circ}C$ 이상일 때 두 합금 모두 $\beta$-Zr이 관찰되었으며 모두 재결정 이후 마지막 열처리 온도가 상승할수록 석출물의 면적 분율이 증가하는 경향을 나타내었다. 모든 열처리 온도 구간에서 Zr-lNb합금의 부식 저항성이 Zr-lNb-lSn-0.3Fe 합금에 비해 우수하였으며 두 합금 모두 재결정 이후 부식 저항성이 급격히 나빠졌다. 이는 $600^{\circ}C$ 이후 형성된 $\beta$-Zr의 영향으로 밝혀졌다.

Keywords

References

  1. J. H. Baek : KAERI Report, KAERI/AR-547/99, 17 (1999)
  2. F. Garzaroli : Zirconium in the Nuclear Industry, ASTM STP 1132, 35 (1991)
  3. T. Isobe and Y. Matsuo, Zirconium in the Nuclear Industry, ASTM STP 1132. 125 (1991)
  4. G. P. Sabol. G. R. Kilp. M. G. Balfour and E. Roberts. Zirconium in the Nuclear Industry. ASTM STP 1023. 227 (1989)
  5. R. J. Comstock. G. Schoenberger and G. P. Sabol. Zirconium in the Nuclear Industry. ASTM STP 1295, 710 (1996)
  6. Jean P. Marden, Daniel Charquet and Jean Senevat, Zirconium in the Nuclear Industry. ASTM STP 1354. 357 (1998)
  7. S. L. Wadekar, S. Banerjee, V. V. Raman and M. K. Asundi, Zirconium in the Nuclear Industry, ASTM STP 1132, 140 (1991)
  8. D.B. Knorr and M.R. Notis : J. Nucl. Mater., 18 (1975) https://doi.org/10.1016/0022-3115(75)90193-2
  9. S. Nomura and C. Akutsu : Electrochem. Techno., 4, 198 (1989)
  10. J. H. Schemel : Zirconium alloy fuel clad tubing engineering guide, Sandvik Special Metals, Kennewick, WA., 298 (1989)
  11. ASTM-G2 : Standard Test Method for Corrosion Testing of Products of Zirconium, Hafnium and Their Alloys in Water at $680^{\circ}F$ or in Steam at $750^{\circ}F$
  12. K. H. Kim, B. K. Choi, J. H. Baek, S. J. Kim and Y. H. Jeong : J. Kor. Inst. Met & Mater., 9, 188 (1999)
  13. K. Holm and J. D. Embury, Acta Metallur., 25, 1191 (1977) https://doi.org/10.1016/0001-6160(77)90207-3
  14. M. H. Lee, H. G. Kim, Y. G. Yoon and Y. H. Jeong, J. Kor. Inst. Met. & Mater., 7, 923 (2000)
  15. S. Kass, Corrosion-NACE 27,443(1971)
  16. Y. H. Jeong, Kor. J. Mater. Res., 6, 585 (1996)
  17. H. G. Kim, Y. S. Lim, M. Y. Wey and Y. H. Jeong, J. Kor. Inst. Met & Mater., 37, 584 (1999)
  18. A. S. Zaimovsky, A. V. Nikulina and N. G. Reshetnikov, Zr Alloys In Nuclear Power, Moscow, Energoizdat, (1981)
  19. J. Godlewsky, Zirconium in the Nuclear Industry, ASTM STP 1245, 663 (1994)
  20. J. Godlewsky, Zirconium in the Nuclear Industry, ASTM STP 1132, 416 (1991)