Surface Photovoltage Characteristics of ${In_{0.5}}({Ga_{1-x}}{Al_x})_{0.5}P$/GaAs Double Heterostructures

${In_{0.5}}({Ga_{1-x}}{Al_x})_{0.5}P$/GaAs 이중 이종접합 구조에 대한 표면 광전압 특성

  • Published : 2001.08.01

Abstract

Surface photovoltage spectroscopy was used to study $In_{0.5}(Ga_{1-x}Al_x)_{0.5}P/GaAs$ grown by metalorganic chemical vapor deposition(MOCVD). Energy gap related transition in GaAs and $In_{0.5}(Ga_{1-x}Al_x)_{0.5}P$ were observed. By measuring the frequency dependence of $In_{0.5}(Ga_{1-x}Al_x)_{0.5}P/GaAs$, we observed that SPV line shape does not chance, whereas the amplitude change. This results is due to the difference in the lifetimes of the photocarriers in GaAs and in $In_{0.5}(Ga_{1-x}Al_x)_{0.5}P$. We also have evaluated the parameters that describe the temperature dependences of the band gap.

Metalorganic chemical vapor deposition (MOCVD)으로 성장한 $In_{0.5}$ ($Gal_{1-x}$ $Al_{x}$ )0.5P/GaAS 이중 이종접합 구조의 특성을 표면 광전압 (surface Photovoltage ; SPV) 측정으로 연구하였다. $In_{0.5}$($Gal_{1-x}$ $Al_{x}$ )0.5P/GaAS 이중 이종접합 구조의 SPV 측정값을 Lorentzian 피팅한 띠 간격에너지 ($E_{0}$ ) 값과 조성비 (x)로 구한 이론 값이 잘 일치하였다. 그리고 변조 주파수 의존성을 측정한 결과 SPV 신호의 형태는 변하지 않고, 신호의 크기만이 변하는 것은 광 조사에 따른 전기적 상태의 과도 현상에 따른 것이고, GaAs와 InGaAlP의 특성시간의 차이는 광 캐리어의 수명의 차이로 분석된다. 그리고 온도 의존성 측정으로 $In_{0.5}$ /($Gal_{1-x}$ $Al_{x}$ )0.5P/GaAS 이중 이종 접합 시료의 균일한 변형분포와 계면상태가 양호함을 알 수 있었다.

Keywords

References

  1. E. Kapon, Semiconductor Laser, Academic Press, London, 8 (1999)
  2. K. Itaya, H. Sugawara and G. Hatakoshi, J. Cryst, Growth 138, 768 (1994) https://doi.org/10.1016/0022-0248(94)90905-9
  3. K. Kobayashi, S. KaWaTa. A. Gomyo, I. Hino and T. Suzuki, Electron Lett. 21, 931 (1985) https://doi.org/10.1049/el:19850658
  4. B.Q. Sun, Z.D. Lu, D.S. Jiang, J.Q. Wu and Zy. Xu, Appl. Phys, Lett. 73, 2697 (1998)
  5. A. Anedda, M.B. Casu, and A. Serpi, J. Appl. Phys. 79, 6995 (1996) https://doi.org/10.1063/1.361465
  6. N.B. Shkenasy, L. Kronik and Y. Spira, Appl. Phys. Lett., 68, 879 (1996) https://doi.org/10.1063/1.116217
  7. L. Aigouy, F.H. Pollak, J. Pelruzzllo and K. shahzad, Solid State Commun. 102, 877(1997) https://doi.org/10.1016/S0038-1098(97)00114-2
  8. M. Leibovitch, L. Kronik, E. Fefer, V. Korobov and Y. Shapira, Appl, Phys, Lett. 79, 8549 (1996)
  9. S. Kumar, T. Ganguli, P. Bhattacharya and U.N. Roy, Appl. Phys. Lett. 72, 3020 (1998) https://doi.org/10.1063/1.121527
  10. P. Blood, J. Appl, Phys, 58, 2288 (1985)
  11. N. Ashkenasy, M. Leibovitch, Y. Rosenwaks, Y. Shapira, K. W. J. barnham, J. Nelson, and J. barnes, J. Appl. Phys, 86, 6902 (1999) https://doi.org/10.1063/1.371770
  12. L. Kronik, Y. Shapira, Surf. Sci. Rep. 37, 1 (1999) https://doi.org/10.1016/S0167-5729(99)00002-3
  13. H. Chui, N. F. Gardner, P. N. Grillot, J. W. Huang, M. R. Krames, and S. A. Maranowski, Semiconductors and semimetals, 64, 49 (2000)
  14. Z. C. Feng, E. Armour, I. Ferguson and R.A. Stall, J. Appl. Phys, 85, 3824 (1999) https://doi.org/10.1063/1.369752
  15. S. Adachi, S. Ozaki, M. Sato, and K. Ohtsuka, Jpn. J. Appl. Phys. 35, 537 (1996) https://doi.org/10.1143/JJAP.35.537
  16. D.S. Cao, A.W. Kimball, and G.B. Stringfellow, J. Appl. Phys. 67, 739 (1990) https://doi.org/10.1063/1.346101
  17. H. Asahi, Y. Kawamura, and H. Nagai, J. Appl. Phys, 53, 4928 (1982) https://doi.org/10.1063/1.331326
  18. D. P. Bour, and J. R. Shearly, IEEE J. Quantum Electron. QE-24, 1856 (1988) https://doi.org/10.1109/3.7127
  19. D. J. Mowbray, O. P. Kowalski, M. Hopkinson, M. S. Skolnick. and J. P. R. David, Appl, Phys, Lett. 65, 213 (1994)
  20. S. P. Najda, A. H. Kean, M. D. Dawson and G. Duggan, J. Appl. Phys, 77 3412 (1995) https://doi.org/10.1063/1.358631
  21. M. C. DeLong, D. J. Mowbray, R. A. Hogg, M. S. Skolnick, J. E. Williams, K. Meehan, S.R. Kurtz, J. M. Olson, R. P. Schneider, M. C. Wu and M. Hopkinson, Appl. Phys, Lett. 66, 3185 (1995) https://doi.org/10.1063/1.113717
  22. V. Swaminathan, M. D. Sturge, and J. L. Zilko, J. Appl. Phys, 52, 6306 (1981) https://doi.org/10.1063/1.328533
  23. O. J. Glembocki, B. V. Shanabrook, N. Bottka, W. T. beard, and J. Comas, Appl. Phys. Lett. 46, 970 (1985)
  24. N. Honma, C. Munakata, and H. Shimizu, Jap, J. Appl. Phys. 27, 1498 (1988)
  25. N. Honma, C. Munakata, H. Itoh, and T. Warabisako, Jan, J. Appl. Phys, 25, 743 (1986)
  26. W. Liu, D. Jiang, and Y. Zhang J. Appl. Phys, 77, 4564 (1995) https://doi.org/10.1063/1.359419
  27. M. Leibovitch, L. Kronik, E. Fefer, and Y. Shapira, Phys, Rev. B50 1739 (1994) https://doi.org/10.1103/PhysRevB.50.1739
  28. W. Zhou. M. Dutta, H. Soon, J. Pamulapati, B. R. Bennett, C .H. Perry and D. W. Weyburne, J. Appl. Phys. 73, 1266 (1993) https://doi.org/10.1063/1.353268
  29. P. Lautenschlager, M. Garriga. L. Vina and M. Cardona, Phys, Rev. B36. 4821 (1987)
  30. A. Kangarlu, H. R .Chandrasekher, M. Chandrasekher, Y. M. Kapoor, F. A. Chambers, B. A. Vojak and J. M. Meese. Phys, Rev. B37, 1035 (1988) https://doi.org/10.1103/PhysRevB.37.1035