Phase Analysis of Mechanically Alloyed $\sigma$-VFe Alloy Powders by Neutron and X-ray Diffraction

기계적 합금화한 $\sigma$-VFe합금의 중성자 및 X선 회절에 의한 상분석

  • 이충효 (목포대학교 신소재공학과) ;
  • 조재문 (목포대학교 신소재공학과) ;
  • 이상진 (목포대학교 신소재공학과) ;
  • 심해섭 (한국원자력연구소 중성자물리실) ;
  • 이창희 (한국원자력연구소 중성자물리실)
  • Published : 2001.08.01

Abstract

The mechanical alloying (MA) effect in $\sigma$-VFe intermetallic compound was studied by neutron and X-ray diffraction. The structure of MA $\sigma$-VFe powders were characterized by the X- ray diffraction with Cu- $K\alpha$ radiation and neutron diffraction with monochromatic neutrons of $1.835\AA$ using a high resolution powder diffractometer (HRPD). Mechanical alloying of $\sigma$-VFe compound gives rise to a dramatic structural change. After 60 hours of MA, the Fe-Fe distribution of the $\sigma$- phase VFe tetragonal structure with 30 atoms in a unit cell is found to change into that of the $\sigma$-(V,Fe) solid solution with bcc structure, which is a stable phase at elevated temperature above $1200^{\circ}C$. A comparison of X-ray diffraction data for the $\alpha$-phase has been also made with the corresponding neutron diffraction data. The (101) and (111) diffraction peaks of the $\sigma$-phase was clearly observed only in neutron diffraction pattern, which is believed to be a characteristic feature due to the chemical atomic ordering of $\sigma$- VFe phase.

$\sigma$-VFe 금속간화합물에 대한 기계적 합금화(MA) 효과를 중성자 및 X선 회절법으로 조사하였다. MA 분말의 구조분석은 X선 회절(Cu-K$\alpha$) 린 중성자회절(HRPD, λ=1.835$\AA$)을 이용하여 행하였다. $\sigma$-VFe화합물의 MA시 큰 구조변화가 관찰되었으며, MA 60시간의 경우 Fe-Fe 훤자분포는 unit cell에 30개의 원자를 포함하고 있는 $\sigma$상의 tetragonal구조에서 $120^{\circ}C$이상에서 안정하게 존재하는 $\alpha$-(V,Fe) 고용체의 bcc 구조로 상변화함을 알 수 있었다. 또한 $\alpha$-VFe 화합물에 대한 중성자 및 X선 회절패턴의 비교분석을 행하였으며 그 결과 $\sigma$상이 가지는 화학적 규칙성에 기인하는 (101)과 (111) 회절 피크가 중성자 회절에서 뚜렷하게 관찰됨을 알 수 있었다.

Keywords

References

  1. J.S. Benjamin, Met. Trans., 1, 2943 (1970)
  2. C.C. Koch, O.B Cavin, C.G. McKamey and J.O. Scarbrough, Appl. Phys, Lett., 43, 1017 (1983) https://doi.org/10.1063/1.94213
  3. R.B. Schwarz, R.R. Petich and C.K. Saw, J. Non-Cryst, Solid 76, 281 (1985) https://doi.org/10.1016/0022-3093(85)90005-5
  4. L. Schultz, J. Less-Common Metals, 145, 233 (1988) https://doi.org/10.1016/0022-5088(88)90281-0
  5. U. Mizutani and C.H. Lee, J. Mat. Sci. 25, 399 (1990) https://doi.org/10.1007/BF00714046
  6. T.B. Massalski, 'Binary Alloy Phase Diagrams', 2nd ed. ASM (1990)
  7. T. Egami and Y. Waseda, J. Non-Crvst. Solids 64, 113 (1984) https://doi.org/10.1016/0022-3093(84)90210-2
  8. J.S. Kasper and R.M. Watarastrat, Acta. Cryst., 9, 286 (1956) https://doi.org/10.1107/S0365110X56000802
  9. R.B. Schwarz and C.C. Koch, Appl. Phys. Lett., 49, 146 (1986) https://doi.org/10.1063/1.97206
  10. C.H. Lee, M. Mori, T. Fukunaga and U. Mizutani, Mat. Sci. Forum, 88-90, 399 (1992)
  11. C.H. Lee, T. Fukunaga and U. Mizutani, J. Jpn. Soc. of Powder and Powder Metallurgy, 40, 295 (1993)
  12. N. Kataoka,K.Sumiyama and Y.Nakamura, Transaction of the Japan Institute of Metals 127, 823 (1986)
  13. T.E. Faber and J.M.Ziman, Phil.Magn., 11,153 (1965) https://doi.org/10.1080/14786436508211931