Exchange Decoupling Of $Fe_3$Fe_3B+Nd_2Fe_{14}B Spring Magnet Powder Compact

Fe_3B+Nd_2Fe_{14}B Spring magnet분말 압분체의 Exchange Decoupling

  • 한종수 (영남대학교 물리학과) ;
  • 양충진 (포항산업과학연구원(RIST), 전자기연구실) ;
  • 박언병 (포항산업과학연구원(RIST), 전자기연구실)
  • Published : 2001.10.01

Abstract

Experimentally it is well known that the magnetic properties significantly deteriorate when nanocomposite bonded magnet are made from nanocomposite ribbon. A decrease in maximum energy product of F $e_3$B+N $d_2$F $e_{14}$B nanocomposite from 14 MGOe in nanocomposite ribbon to 6.5 MGOe in powder compact was fecund to be general. Thus, the present study is focused on finding out the root of exchange decoupling of N $d_4$F $e_{73.5}$ $Co_3$H $f_{0.5}$G $a_{0.5}$ $B_{18.5}$ nanocomposite powder compacts. The exchange decoupling behavior of the powder compact of F $e_3$B+N $d_2$F $e_{14}$B composition was studied by measuring DC demagnetization and isothermal remanent demagnetization curves, which are essential for plotting produced $\delta$M curve. From the $\delta$M plot the deterioration in the magnetic properties resulted from the fact that the magnetostatic interaction became dominant rather thanthe exchange interaction in powder compact. It is concluded that the demagnetization behavior governed by the dominant magnetostatic interaction reduced the remanence magnetization, which caused the reduction of maximum energy Product of the powder compact. We also found that the elimination of residual stress which is unavoidably accumulated during grinding process enhanced the magnetic properties considerably.bly.bly.

Nano결정립 N $d_2$F $e_{14}$B+F $e_3$B 복합상 자성 압분체의 탈자화 현상을 자기특성 변화 및 $\delta$M측정에 의해 분석하였다. 초기 조성 N $d_4$F $e_{73.5}$ $Co_3$H $f_{0.5}$G $a_{0.5}$ $B_{18.5}$의 최대자기에너지적은 리본상태에서 14 MGOe, 분말 압분체에서 6.5 MGOe로 크게 감소하였다. 이러한 현상은 복합상의 리본상태에서 존재하는 교환상호작용력이 분말 압분체에서는 나타나지 않고, 정자장 작용에 의한 탈자화로 인해 잔류자속밀도가 크게 감소한 결과이다. 이는 급냉리본(bulk) 보다 압분체상태에서 정자장 상호작용력이 교환상호작용력보다 더 크게 작용하는 결과로 해석된다. 또한, 자성체 리본을 분쇄하는 과정에서 발생한 응력도 자기특성을 감소시키는 요소임을 확인하였다.하였다.하였다.

Keywords

References

  1. J.Mater v.80 R.Coehoorn;D.B.de Mooji;C.de Waard
  2. IEEE Trans.Magn. v.29 R.Skomski;J.M.D.Coey
  3. J.Magn.Magn.Mater. v.153 R.Ricsher;T.Schrefl;H.Kronmoller;J.Fidler
  4. J.Appl.Phys. v.64 G.C.Hadjipanayis;W.Gong
  5. J.Magn.Magn.Mater. v.152 I.Panagiotopoulos;L.Withanawasam;G.C.Hadji-panayis
  6. IEEE Trans.Magn. v.35 T.Schrefl;J.Fidler
  7. J.Magn.Magn.Mater. v.124 T.Schrefl;H.F.Schmidts;J.Fidler;H.Kronm
  8. J.Appl.Phys. v.29 E.P.Wohlfarth
  9. IEEE Trans.Magn. v.25 P.E.Kelly;K.O'Grady;P.I.Mayo;R.W.Chantrell
  10. IEEE Trans.Magn. v.27 I.A.Beardsley;J.G.Zhu
  11. IEEE Trans.Magn. v.32 C.J.Yang;E.B.Park
  12. J.Magn.Magn.Mater. v.166 C.J.Yang;E.B.Park
  13. J.Magn.Magn.Mater. v.168 C.J.Yang;E.B.Park
  14. J.Appl.Phys. v.84 no.15 Youhui Gao;J.H.Zhu;C.J.Yang;E.B.Park
  15. 대한민국 특허 제048371호(1992);특허 제061335호(1993) 양충진
  16. J.Magn.Magn.Mater v.130 M.Seeger;D.Kohler;H.Kronuller