자왜형 초음파 트랜스듀서용 도파봉의 설계 및 제작

Design and Construction of the Acoustic Horn for Magnetostrictive Ultrasonic Transducer

  • 발행 : 2001.08.01

초록

본 연구에서는 자왜형 초음파 트랜스듀서의 도파봉을 이론적으로 해석하고 그 타당성을 유한요소 해석법으로 검증하였으며 두 해석법의 결과는 서로 잘 일치하였다. 본 연구에서 유도한 이론적 해석법은 유한요소 해석법에 비해서 빠른 시간 내에 주어진 주파수를 만족시키는 도파봉 길이를 결정할 수 있는 반면, 차단 주파수 (cut-off frequency)를 넘어서는 범위에서만 해석이 가능하다는 단점을 가진다. 해석결과 현수선 도파봉 (catenoidal horn)이 지수함수 도파봉 (exponential horn)에 비해서 더 큰 변위 증폭을 가져왔고, 현수선 형상 길이가 짧을수록 더욱 큰 변위로 증폭시킬 수 있었다. 해석 결과를 바탕으로 공기중에서 공진 주파수 20.8 ㎑를 가지는 자왜형 초음파 트랜스듀서를 제작하여 성능을 측정하였다. 자왜형 트랜스듀서는 수중에서 19.3㎑의 공진 주파수와 199 dB의 최대 SPL (Sound Pressure Level)을 가지고 무지향성의 특성을 보였다.

In this paper, we designed the acoustic horn for magnetostrictive ultrasonic transducers in a theoretical manner, and validity of the analysis was verified through comparison with the results of finite element analysis. Results of the two analysis methods showed good agreement with each other. The theoretical method can fairly quickly determine the horn length that satisfies given frequency specification, but also has the drawback that it is applicable only to the frequency range over the cut-off frequency. According to the results, the catenoidal horn can provide larger amplification than the exponential horn. It was also found that it is more desirable for the region having the catenoidal curvature to be as short as possible to achieve larger amplification of the transducer deformation. Based on the analysis results, a magneto-strictive transducer sample was fabricated and its performance was evaluated experimentally. The transducer has the resonance frequency of 19.3 ㎑ as well as the maximum SPL of 199 dB, and shows the omni-directional radiation pattern.

키워드

참고문헌

  1. Ultrasonics v.34 A study on a new flexural-mode transducer-solid horn system its application to ultrasonic plastics welding Y. Watanabe;E. Mori
  2. Sensors and Actuator A v.54 Silicon microfabricated horns for high power ultrasonics A. Lal;R. M. White
  3. Introduction to Theory adn Design of Sonar Transducers O. B. Wilson
  4. J. Acoust. Soc. Am. v.89 no.3 Characterization of Terfenol-D for magnetostrictive transducers M. B. Moffett;A. E. Clark;M. Wun-Fogle;J. Linberg;J. P. Teter;E. A. McLaughlin
  5. Proceedings of the first international meeting on magnetoelastic effects and applications Giant magnetostrictive alloy actuators F. Claeyssen;N. Lhermet;G. Grosso
  6. Proceedings of the first international meeting on magnetoelastic effects and applicatinos Differential incremental measurements of magnetoelastic parameters of highly magnetostrictive materials L. Kvarnsjo;G. Engdahl
  7. Journal of Materials Processing Technology v.55 Computer-aided design of acoustic horns for ultransonic machining using finite-element analysis S. G. Amin;M. H. M. Ahmed;H. A. Yousset
  8. J. Acoust. Soc. Am. v.41 no.4 Complete solution of the Webster horn equation E. Eisner
  9. Ultrasonics v.34 Study on the longitudinal-torsional composite mode exponential ultrasonic horns S. Lin
  10. J. Acoust. Soc. Am. v.23 no.2 A barium titanate transducer capable of large motion at an ultrasonic frequency W. P. Mason;R. F. Wick
  11. Applied Acoustics v.44 Discrete component equivalent circuit for Webster's horns P. Lesniewski
  12. Ultrasound in industrial processing and control V. F. Nozdreva
  13. Proceedings of the first international meeting on magnetoelastic effects and applications Piezomagnetic device Z. Kaczkowski
  14. Fundamentals of Acoustics L. E. Kinseler;A. R. Frey;A. B. Coppens;J. V. Sanders
  15. Acoustics L. L. Beranek