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Abstract

A probabilistic model for fatigue life of a structural component is derived when the
component is in a variable-amplitude loading environment. The physical mechanism which
governs fatigue failure is used to model the fatigue life. Especially, the judgement of
rotational symmetry in the-stress-intensity-factors results in the probability distribution for
fatigue life. The probability distribution is related to the familiar truncated Gaussian
distribution, which has a single parameter with a direct physical meaning.

1. Introduction

Many engineering structures such as bridges, airplanes and ships undergo dynamic
loading. When a structural component is subjected to a variable-amplitude load below
yielding stress, fatigue is the commonly identified cause of the component’s failure.

Fatigue fracture is due to a process consisting of three successive phases [6, 7
(1) crack initiation, (2) propagation and (3) final fracture. Cracks always exist; e.g., rough
surfaces contain initial cracks. When a load is applied to a dominant initial crack, the crack
propagates up to a critical length and final fracture begins. The crack propagation phase
occupies a major portion of the component’s life. The final fracture occurs when the
unfractured cross-section is unable to sustain the maximum tensile stress of loading. This
moment defines fatigue failure. However, the period of the propagation phase varies even
for similar materials under similar loading conditions. Therefore, the moment of fatigue
failure, or fatigue life, is uncertain.

To predict the variability of a component’s fatigue life, probability distributions are
used. Common examples used in practice include such two-parameter families of
distributions as the lognormal, Weibull and Gamma. A physical motivation for these models
is often lacking. This problem is compounded by the fact that, in practice, only small
samples of data are available. This makes it difficult to identify the appropriate distribution
using goodness-of-fit tests. This is especially true when the prediction of the “safe life” is
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of concemn [4].

This paper proposes a new procedure to determine fatigue life distributions. It
starts with the physical laws underlying the fatigue process. It is assumed that crack
propagation under a variable-amplitude load shows relatively smooth and continuous
behavior. This type of assumption was first put forward by Barsom [2). It makes
expressions for the crack-propagation behavior under a constant-amplitude load tractable
for fatigue life modeling.

In Section 3, the physical relationship between propagation rate and stress range is
used to express the distribution for fatigue life in terms of the distribution for stress
range. This is useful in cases where a distribution for stress range is available. For
instance, the Rayleigh distribution is common for stress range and the methods of Section
3 show which fatigue life distribution is consistent with it.

In Section 4, certain physical symmetries implied by the stress-intensity-factor
range is used to derive a Bayesian statistical-parametric class for fatigue life. There, the
truncated Gaussian model emerges with the root mean squared stress-intensity-factor

range serving the role of the scale parameter.

Notation

c crack length

dc crack increment or crack measurement unit
Co, Cy initial crack length and critical crack length
N number of cycles

A, m empirical constants

o stress

do stress range

K stress-intensity-factor

4K stress—intensity—factor range

o number of cycle blocks until fatigue failure
L fatigue life in the number of cycles until failure

2. Crack Propagation

When a structural component - is subjected to a constant-amplitude load, the
following differential equation is commonly employed to describe crack propagation (3, 5
10]:

e _ ACar)™, W
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Here A is a constant which depends on the material and stress ratio, and m is an
empirical constant depending on the material properties. This equation makes the
crack-propagation rate dc/dN a function of the stress-intensity-factor range 4K

A different function is found by using the relation 4K = a AoV reemployed in the
theory of fracture mechanics [8]. Here « is the crack’s geometrical factor. Substituting this
in Equation 1, we find

j—]f, = Ala doV 7)™, )

or that the crack-propagation rate is a function of stress range and crack length.

Assuming that the propagation behavior under a variable-amplitude load is smooth
and continuous, either of the above two differential equations can be used to model fatigue
life. Each leads to a distinct life model. These will be presented in the next two sections.

In the literature [5], it is the change in crack length per cycle that is considered
random. Specifically, cycle blocks consisting of several loading cycles are assumed and the
change in crack length during each cycle block is random. The problem is that there is a
strong and mathematically complicated dependence between these random variables (see
Equation 2). To avoid this problem, the number of cycles requiring a unit crack increment
is instead used as the random variable. This variable is equally effective and, at the same
time, relates in a mathematically simple fashion to the pertinent quantities of the fatigue
process.

3. Life Model Based on Stress Range

When we first consider the description of the fatigue-propagation behavior offered
by Equation 2, fatigue life L becomes the number of cycles necessary to cause fatigue
failure. To determine this, the propagation of the crack can be discretized into unit crack
increments. These increments could be a convenient measuring unit. Let 4N; be the
number of cycles containing in the ith unit increment. Each 4N; is contained in a cycle

block. The number of cycle blocks M until fatigue failure is determined by the initial and

critical crack length as follows: M=-“ 1et M' be the greatest integer less than or

equal to the real number M. M reflects a conservative prediction of fatigue life. Then,
the fatigue life random variable L can be written as the sum of the number of cycles
within each cycle block:

L=A4N |+ 4N3;+ - + 4N, . 3)
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We now proceed to express the fatigue life L in terms of the stress range da
The difference equation corresponding to Equation 2 is

j—g, = A(a V1™, 4)

where A is now an empirical constant depending on the material, stress ratio, and crack
geometry. This equation determines the number of cycles needed for each crack length to
increase by dJc Substituting for the 4N;'s in Equation 3, we finally obtain

dc

_m
Axnt

1_,1 + e+ 1 m )

¢’ (ot (M =1)dc) ©

L=—-

(4o)" X

Once we have a probability density function for the stress range, such as the
commonly used Rayleigh distribution, the probability density function for L, is determined
by a change of variables. This result is only useful as a consistency check. In particular,
we know of no physical basis for the choice of the Rayleigh distribution for stress range.

4. Life Model Based on Stress-Intensity-Factor Range

We now derive a probability model consistent with Equation 1. Following Barsom
[3], we assume that a representative value 4K, of the stress-intensity-factor ranges can

be used to express the crack-propagation behavior under a variable-amplitude load.
Specifically, Barsom showed that the root mean square of the 4K/s may serve as such a

representative value, ie.,

1
1 2
4K, =} 2 4K

where N is the number of measurements until fatigue failure.

Conversely, when we have a value of 4K, we can decompose it into 4dK}s for
i=1, 2, - ,.Ndere N is now the number of cycle blocks until fatigue failure. Each 4K,

can be regarded as a random variable which determines the number of cycles for the ith
unit increment of crack length.

Since 4K, completely characterizes the fatigue process, the particular decomposition
into the individual 4K;s should not influence the probability model. This implies the joint
probability distribution for 4K; is invariant under transformations that leave 4K, invariant.

These transformations can be pictured as rotations in the N-dimensional space of 4Kis
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[1, 9]. Distributions that are invariant under rotations are called rotationally-symmetric. In
practice, the number N of cycle blocks is large. For large N, the rotationally-symmetric
distributions tend to a conditional Gaussian probability distribution. In the present case, we
find that the 4K, are each truncated Gaussian, conditional on AK,? which appears in the

role of the traditional variance parameter:

A
24k

F(Ak;| Ak dAk; « —i— exp| — ddk; . )
p ak,

The corresponding lower-case letters are being used for the realization of the upper-case
random variables and the symbol “ o<” denotes “proportional to.”

The difference equation corresponding to Equation 1 is

de _ m
AN—A(AK) . (7N

Here 4K is generic for the 4K; Substituting the decomposition for L in Equation 3, we
find for the relation between fatigue life L and 4K

_ M de_ 1

L="4""r"

A change of variable then gives the desired density for fatigue lLfe:

2

m

2 k2

1y, !
FU | ak)dl < ( Ak,,)l exp

) dl . ®

This distribution is not commonly used for fatigue life. However, the m~th power of
fatigue life L has a truncated Gaussian density function, which has been proposed as an
alternative to the Birmnbaum-Saunders model.

The expression in Equation 8 is a likelihood model for fatigue life. The model is
Bayesian in the sense that the parameter 4K, is a random variable having some prior

distribution & With a particular choice of prior, an unconditional or predictive distribution
is determined as follows:

fpdr=[ [ £ ar,) wak,) dar)ar . ©
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5. Conclusions

The probability model for fatigue life presented here has two important
distinguishing features. First, it is derived from the differential equations governing the
fatigue process. Second, samples and other data are used only to update the fatigue life
distribution (see Equation 9). These means that curve fitting techniques requiring large
sample sizes can be avoided.

In practice, there are only small-sized samples available for predicting fatigue life
data. Even though more accurate prediction can be expected from more samples, the
proposed model can be utilized even in the case that only one sample is available. This is
possible due to the fact that the model reflects the consistent behaviour of fatigue process.
It doesn’t rely on life data only. Life data are the sources for validating the probability
model. It should not be a basis for the model. Therefore, the physical failure mechanism
should be incorporated in the probability models.

The Weibull and the Birmbaum-Saunders distributions that are commonly used in
the prediction of fatigue life are two-parameter families. The parameters in the Weibull
and the Bimbaum-Saunders distributions are abstract statistical entities expressing
mathematical properties of the probability distributions such as its shape and scaling [4,
11). On the other hand, the distribution in Equation 8 has only a single parameter and this
parameter has a direct physical meaning pertinent to the fatigue process (root mean
squared stress-intensity-factor range). This implies that the probability distribution
proposed here is “operational.”
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