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Abstract

The purpose of this study is to present methods for determining the k most vital arcs (k-MVAs)
in the minimum spanning tree problem(MSTP) using evolutionary algorithms. The problem of finding
the k-MVAs in MSTP is to find a set of k arcs whose simultaneous removal from the network
causes the greatest increase in the total length of minimum spanning tree. Generally, the problem
which determine the k-MVAs in MSTP has known as NP-hard. Therefore, in order to deal with the
problem of real world the heuristic algorithms are needed. In this study we propose to three genetic
algorithms as the heuristic methods for finding the k-MVAs in MSTP. The algorithms to be
presented in this study are developed using the library of the evolutionary algorithm framework(EAF)
and the performance of the algorithms are analyzed through the computer experiment.

1. Introduction

Minimum spanning tree problem(MSTP) is the problem which finds a spanning tree
that has the smallest total length of its constituent arcs, measured as the sum of costs of
the arcs in the spanning tree(l]. The optimum solutions for this problem can be found by
using the Kruskal's, Prim’s, and Sollin’s algorithm. Finding the optimum solution with
these algorithms is important, however, in the position of a network administrator, it is
also important to understand how the arcs affect the performance of the total network
when some arcs cause problems in a network. The best known application for this problem
1s in a conflict situation where a logistics or communications network are under
attacks[89]. In this situation, the user wishes to know which arcs are the most vital to
him so that he can reinforce these arcs against attack, while his enemy wants to destroy
those arcs which most increase the total length of the minimum spanning tree[5]. The
problem of finding the k-MVAs in MSTP is to find a set of % arcs whose simultaneous
removal from the network causes the greatest increase in the total length of the spanning
tree. In the past, research on this problem has been conducted by Lin & Chern, H.Shen,
and Hsu. Lin & Chern{6] showed that the problem of finding the k-MVAs in MSTP is to
be NP-hard and suggested an exact algorithm using the branch and bound method. H.
Shen[4] also proposed a randomized algorithm based on the approach of an arc replacement
method. However, there exists some problems in applying these algorithms to the real
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world. Although there may be an optimum algorithms for k-MVAs problem, it has limits
in computer memory and computation time since k-MVAs problem has been proven
NP-hard. Therefore, it is more practical to find a heuristic solution rather than an optimum
solution for k-MVAs problem.

In this study, we developed three kinds of evolutionary algorithms for finding the
k-MVAs in MSTP within a short time, and through computer experiments, we also
evaluated the performance of these algorithms applied to 20 problems generated from a
standard problem generator of DIMACS.

2. Evolutionary Algorithms for Finding the k-MVAs

2.1 Express of individuals

In order to apply genetic algorithms, a method of expressing individuals reflecting the
characteristics of the problem is required. A binary expression as a traditional method has
been widely used[11]. However, it is difficult to express the solution of the network
problem treated in this study with the binary expression. Although it is possible to use
binary expression, it is not appropriate for the genetic operator to maintain the feasible
solution in the form of binary expression[l]. In this study, instead of the binary expression,
we consider two kinds of methods for expressing arcs of network. One is to express arcs
using nodes and the other is to express arcs by giving serial numbers to arcs. The former
is easy to express and to analyze arcs but it may cause infeasible arcs so that it may
require an additional repairing method. On the contrary, the latter does not cause infeasible
arcs but it can cause repeated arcs. Therefore, if we can just resolving the problem of
repeated arcs, the latter is much easier than the former to be applied. In this study we use
the latter method. Using the latter expression method, an individual can be expressed with
arc factors consisting of arcs and then a potential solution for k-MVAs can be expressed.

2.2 Fitness evaluation and calculation

Each individual defined in this study consists of arcs set which is considered as
k-MVAs. The fitness value -of this individual is calculated by the difference between the
length of the minimum spanning tree after removing k arcs and the length of the original
minimum spanning tree. Therefore we can tell that the greater fitness value is the more
vital.

2.3 Selection methods

For the selection methods, the elitism proposed by Goldbergl3] is used to maintain the
elite individuals of the present population. For this purpose, after arranging the fitness
value by descending order for each individuals of the generation P(d, the best individual is
copied. Then this best one is transmitted to next generation P(t+1) and then the rest
individuals are generated from P(#) using the tournament selection method. In this
method, the most elite individual can be protected in each population as generation is
repeated and the better individual than that of the previous generation can be found by the
tournament selection method.
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2.4 Genetic operators

Genetic operators are composed of crossover and mutation. In this study, order
crossover is used to prevent folding which can occur when crossover and mutation are
performed. The order crossover is a method of inheriting some partial factors from one
parent and the other partial factors from another parent according to their relative order.
We modified the concept of inheriting factors based on their relative order with the concept
of directly inheriting the entire factors of the parent in the next generation only when
overlap occur. Figure 1 shows an example of a crossover when k = 2. In Figure 1,

offsprings, 0, and o0, are generated by transmitting one factor from each parent, p; and
P2, based on one-point cut method. When parents, p; and p,, are given like in Figure 2,
their offspring o; has folding factors, that is, like o,={m; m;} In this case, all factors
of the parent Py are directly transmitted to its offspring o; instead of succeeding m;

from the parent p,. As it is done like this, the folding factor get removed.

ni={m;| m} pr={m;| m} pr={m;| m} p={m;| m}
or={m; my oy={m, m;} or={m; m} oy={m, my
1 (folding) 1
pe={m, | my} py={m, | my) po={my, | m} po={m, | m}
Figure 1. Crossover(no redundancy) Figure 2. Crossover (redundancy)

Mutation, as a step of generating entirely new genes, takes on a role of widely
searching the solution space. In this study, mutation is performed based on each factor.
When overlap occurs, we generate another factor and then mutate the factor into a factor
that cannot incur overlap.

2.5 Termination condition
For termination, if the number of newly generated individuals is more than 1000, then

the experiment is terminated because it is impossible to improve the solution in that case.

Based on the above contents, genetic algorithms for determining 2-MVAs in MSTP can
be summarized as follows.

Simple Genetic Algorithm (SGA) for Determining the i-MVAs

Step 1 (Generating an initial population) Generating an initial population P(d using a
random generation method.

Step 2 (Fitness evaluation) Evaluate the fitness value of all individuals in P(2).

Step 3 (Selection) Select P(¢+1) from P(#). For this purpose, arrange the fitness values
of P(#) by descending order, and then compare the best individual in P() with the
best individual in P(¢—1) After comparing, inherit the individual with the greatest
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value into P(¢+1) Using a tournament selection method, the other individuals are
generated one by one.

Step 4 (Crossover) Performing the order crossover for the two individuals that are
randomly selected from the present population, generate offsprings.

Step 5 (Mutation) According to the mutation rate, select a random individual from the
population. Select a random factor from the selected individual, and then mutate it
another factor that is not overlapped.

Step 6 (Test of termination condition) When the termination condition is satisfied, the
experiment is terminated. Otherwise, go to Step 2 after setting ¢ = ¢ +1.

Steady State Genetic Algorithm (SSGA) for Finding the k-MVAs

The standard genetic algorithm evolves the entire population by generation. On the
contrary, SSGA regenerates only a few individuals (usually, one or two individuals)
repeatedly and replaces them with individuals having high fitness values. The merit of this
algorithm is to maintain the best individuals by replacing individuals having low fitness
values. Also, once a good individual is generated, this individual can participate in the
regeneration process. The steps for SSGA are the following:

Step 1 (Initial population) Set <0 and then generate an initial population P(#).

Step 2 (Fitness evaluation) Evaluate the fitness of all individuals in F#).

Step 3 (Selection) Set t< t+1 and then select a few individuals from P(¢—1) Let a set of
selected individuals be sub-P(¢).

Step 4 (Crossover and mutation) Perform crossover and mutation for sub-P(t).

Step 5 (Replacement) According to the replacement strategy, select individuals from P(t),
and then replace these individuals with individuals in sub-P(¢).

Step 6 (Fitness evaluation) Evaluate the fitness of sub-P(t) that are newly generated
offsprings.

Step 7 (Termination condition) When the termination condition is satisfied, the experiment
is ended. Otherwise, go to Step 3.

Ecosystem Genetic Algorithm (ECOGA) for Finding the &-MVAs

In the ECOGA, individuals evolve by comparing themselves with other individuals in a
limited space, that is, neighbor. Initial population consists in the form of a torus with a
two dimensional a lattice-shaped structure and a neighbor in the form of an X7 is used.
Individuals in the neighbor evolve based on the SSGA. A neighbor N has a square
structure centering on an individual in the position of (i, j). The ECOGA prevents the
population from converging into a partial optimum due to the super elite individual. Also, it
can search various solutions. The steps for the ECOGA are the following.

Step 1 (Initial population) Set t«-0 and then generate an initial population P(t).
Step 2 (Fitness evaluation) Evaluate the fitness of all individuals in P(2).
Step 3 (Selecting Neighbor) Select a random position (i, /) and define its neighbor Nj.
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Step 4 (Evolvement)
(4.1) Based on the fitness value of Ny, select two individuals according to the value of
probability.
(4.2) Perform genetic operation (crossover and mutation) and then generate two
offsprings.
Step 5 (Replacement) According to the replacement strategy, replace two offspring with
two individuals in Nj.
Step 6 (Fitness evaluation) Evaluate the fitness of newly generated offspring.
Step 7 (Termination condition) When the termination condition is satisfied, the experiment
is ended. Otherwise, go to Step 3.

3. Experiments and Analysis

The experiments for determining the Xx-MVAs in MSTP were performed for the 20
problems generated from the standard problem generator of DIMACS. The proposed genetic
algorithms are programmed using Visual C++ language and performed on an IBM PC with
128M RAM and a Pentium-~III CPU (650MHz).

3.1 Preliminary experiment to determine the value of genetic parameters

To find a good solution by the proposed genetic algorithms, we performed a preliminary
experiment for the spagrid3 problem generated from DIMACS. Table 1 shows the plan of
the preliminary experiments to find the optimum combination of a crossover and mutation
rate. The preliminary experiment is performed 20 times for each combination. In this
experiment, the interaction between parameters is neglected and the optimum combination
of genetic parameters is determined based on the average value of the best fitness value in
each experiment. If the number of newly generated individuals is more than 1000, the
experiment is terminated since there is no possibility of improving the solution in that
case.

Table 1. Preliminary experiment plan

Algorithm
Parameter SGA SSGA ECOGA

Population size 100/200/300/400/500 | 100/200/300/400/500 -
Selection method Tournament method | Tournament method | Tournament method

Crossover rate 0.5/0.6/0.7/0.8/0.9 0.5/0.6/0.7/0.8/0.9 0.5/0.6/0.7/0.8/0.9
Mutation rate 0.1/0.2/0.3 0.1/0.2/0.3 0.1/0.2/0.3
Newly genctated 1000 1000 1000
Replacement rate - 0.1/0.15/0.2 -
ECOQO. size - - 10/15/20/25/30
Neighboring population _ _ 3

S1Ze

The experimental results are shown in Table 2.
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Table 2. Results of preliminary experiment( in case of 2-MVAs )
(Crossover SGA SSGA (0.1) SSGA (0.15) SSGA (0.2) EcoGA

M;i‘;‘igon Best |{Average| Best |Average| Best |Average| Best |Average; Best jAverage

rate)  [fitness| fitness (fitness| fitness fitness| fitness |fitness| fitness |[fitness| fitness
(05,0.1) | 1639 837 1007 515 935 627 1007 589 1199 763
(05,0.2) | 1268 673 1058 561 1458 | 617 1012 454 1793 605
(05,0.3) | 1472 500 1041 590 1815 | 567 1494 611 1071 457
(06,0.1) | 1639 832 1007 482 1007 555 1409 593 1992 766
(06,0.2) | 1494 724 1028 569 1460 508 1148 570 1639 639
(0.6,0.3) | 1992 664 1532 634 1073 539 1074 595 1367 606
(0.7,0.1) | 1586 706 1608 709 1061 736 991 529 1078 570
(0.7,02) | 1793 749 1483 477 960 428 1095 498 1191 544
(0.7,03) | 1494 744 1082 616 1042 458 1838 689 1355 796
(0.8,0.1) | 1659 843 1048 600 1007 525 1458 642 1253 620
(0.8,0.2) | 1432 678 1070 599 18151 608 1074 556 1415 556
(0.8,0.3) | 1168 674 1008 693 1007 397 1485 648 1494 600
(09,0.1) | 1793 778 1070 531 1554 | 640 1483 725 1086 600
(0.9,0.2) | 1992 725 1028 545 1472 575 1113 505 1480 657
(0.9,0.3) | 1483 500 1068 437 1487 566 1084 558 1472 676

In the Table 2, the optimum parameter combinations are determined at(0.6/0.1) for SGA,
at (0.7/0.1/0.15) for SSGA and at (0.7/0.3) for ECOGA. After setting the parameter
combination for each algorithms to the optimum level obtained from the preliminary
experiment, we performed the experiment 20 times while changing the population size in
order to determine both optimum population size and ecosystem size. The change of the
average fitness value in response to the population size is shown in Table 3.

Table 3. Change of the fitness for population size

Population SGA SSGA _ ECOGA
size Best Average Best Average Eco. size Best Average
fitness fitness fitness fitness fitness fitness
100 1494 969 1085 600 10 1113 605
200 1992 907 1355 739 15 1035 644
300 1067 810 1793 886 20 1096 790
400 1793 1042 1992 987 25 1281 1005
500 1089 952 1554 962 30 1053 991

As a results, the optimum parameter combinations for each algorithms are determined as
Table 4.



Joumal of Industrial and Systems Engineering Vol 24. No. 68 27

Table 4. Optimal parameter combinations

Algorithm
Paramcioie SGA SSGA ECOGA
Population size 400 400 -
Crossover rate 0.6 0.7 0.7
Mutation rate 0.1 0.1 0.3
Newly generated
ingivgiduals 1000 1000 1000
Replacement rate - 0.15 -
Eco. size - - 25
Neighboring population ) 3
size

Applying these results to the spagrid3 problem, we have found 2-MVAs as shown in
Table 5. Figure 3 is the program execution imagel[l]. It shows that the best and the worst
fitness of the final population generated in each experiment (above left), the process of
updating showing the convergence of fitness into the best fitness (above right), the change
in the average fitness of all individuals showing the evolution of the entire population
(below left), and finally, the change of the average fitness of the best fitness showing the
evolution of the best fitness (below right).

{Max) [MIN] PR
-y 1073.00000 17.00000 1 I
o )-H 1057.00000 0.00000 |
- 3: 1091.00000 0.00000 i ~
N8y 1608.00000 0.00000
e 5: 1063,00000 20.00000 i
o~ MOST 1608.00000 000000 o
0.18010E+3
TiET]

0.12010E+3

1.000 X 10E+ 0.12010E+3
-

—

Figure 3. Program execution image

3.2 Experimental results and analysis

Before performing the experiment for the problems of DIMACS, we evaluated the
performance of the proposed algorithms using 10 test problems whose optimum solution are
already known. These 10 test problems are the MSTP with 5 to 18 arcs. In this
experiment, we found that the proposed algorithms have a good accuracy since all the
three algorithms have found the optimum solutions for the 10 test problems as shown in
Table 5.
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Table 5. Experiment results for small-size test problems

Best .

Problem (nodes,arcs) 2- MVAs Optimum
fitness

Test 1 (5,7) s {1,4},(6,7} optimum
Test 2 (5,8) 12 {45} optimum
Test 3 (6,10) o0 {1,2},{8,10} optimum
Test 4 (7,10) © {1,2}.{8.9}, {8,10},{9,10} optimum
Test 5 (7,11) 0 {1,2},{10,11} optimum
Test 6 (8,13) e {9,12},{10,13} optimum
Test 7 (9,13) oo {1,2}{7.11}{12,13} optimum
Test 8 (7,15) 0 {1,2},{14,15) optimum
Test 9 (10,15) o {4,6}{7,11},{4,13} {6,13} optimum
Test 10 (10,18) o0 {2,3},{17,18} optimum

Using the opﬁmum parameter combinations of Table 4, we performed the experiment for
the 20 problems generated from DIMACS. The results of this experiment are shown in
Table 6. Table 6 shows that the SSGA was the best algorithm, the ECOGA was the
second best one and the SGA is the third best one.

4. Conclusions

In this study, we proposed three kinds of evolutionary algorithms for finding the
k-MVAs in MSTP. So far, the efficient algorithms for this problem have not been known
and the algorithm proposed recently is also difficult to apply to the real world. On the
contrary, the three algorithms proposed in this study have successfully found the k-MVAs
in a large scales network problems with more than 20,000 arcs. Especially, for the small
sized network problem with 5 to 18 arcs, the three algorithms have found perfectly the
optimum solution. Based on the experiment for the 20 problems generated from DIMACS,
we found that the SSGA was the best algorithm, the ECOGA was the second and the
SGA was the third.
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Table 6. Results of the main experiment

Problem SGA S5GA Eosh
Best Average Best | Average Best | Average
(nodes,arcs) Fitness | Fitness 2-MVA Fitness | Fitness 2-MVA Fitness | Fitness FMVA
MBS e | et | s | 09 | o2 | 03s1476) | 1068 | 1029 | (1246365)
(661,1980)
Spagridd
pagrid 4% 36 | (10343314) | 392 282 | {24083142) | 611 365 | (31423700)
(1289.3864)
Spagrids 1679 1305 {2808,1152) 2642 1409 {2650,2550) 1653 1468 {2808,76)
(1036.3105)
(44571605,
_ (4457,388),(445
pagr 1093 576 (4457781 | 1120 496 | (44573245) | 1054 765 | 7,129),(370,445
(1601,4800) 7),{4457,3899),
{4457.1209)

Spagrid7 395 237 {3361,3730} 384 248 {3730,1070) 383 273 (3730,2583}
(1701,5100)

id
Spagridl0 1489 1015 | (58695065} | 1953 | 1004 | (43925667} | 1341 | 1135 | (54382633}
(2001,6000)

d

Serand3 11045 | 7488 (363253) | 10420 | 74 | (1745167} | 10661 | 7115 | {363.369)
(409.2000)

Sprandd 6261 | 4960 | (994806} | 7795 | 5363 | (4171012} | T8 | 4955 | {1970.209)
(508,3000)

Sprand 7225 5865 | (16432114) | 10139 | 7117 | (47552113) | 8783 | 5385 | {18651251)
(890.5000)

Sprand3 9594 6648 | (451121} | 8510 | 6130 | (20493506} | 79%6 | 5609 | {44733106)
(999.5003) .

Sprand? 8454 6186 | (5411,889) | 10832 | 7119 | (41424198) | 10195 | 6858 | (5464142)
(1200.6000)

Sorandd \geig | ssg | crezsra4s) | 930 | 63 | (31562081 | eas | 5276 | {1246806)
(1367,7645)

Sprand) 17147 | 13969 | (35832550 | 17776 | 14448 | {92920} w ® {1186,1185)
(1789.3837)

d
Sprandl0 9272 7191 | (78266612} | 11548 | 85 | (527869} | 9260 | 6578 | (34091576)
{2000,8999)
Sprandll 13025 | 9040 (306860) | 14446 | 10023 | (8775995} | 11255 | 8996 | {1009.4249)
(2789.10000)

SRS | g | ort | (420269 | 9600 | T4 | (200268) | 7018 | 665 | (2341388)
(5302450

Spacych 13668 8724 (682675) | 13232 | 9721 {64,675} 12054 | 6389 | {6752218)
(770.3050)

s

pacyc? 8028 5207 {3140,5570} 7042 5264 {6252,2494) 6637 5039 {3013,1110}
(1120,7025)

Spacych 5642 3614 | {11360,2000) | 67600 | 4110 | (32479012} | 535 | 5311 | (8775.218)
(1597,14364)
Spacycld 3421 516 | (126218189) | 4139 | 2863 | (23514901} | 3849 | 2445 | (816:8274)
(1956.20140)
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