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A Time-Domain Approach for the Second-Order Diffraction Problem
Around Circular Cylinders in Random Waves
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ABSTRACT: This study concentrates on the second-order diffraction problem around circular cylinders in multi-frequency waves. The
method of solution is a time-domain Rankine panel method which adopts a higher-order approximation for the velocity potential and
wave elevation. In the present study, the multiple second-order quadratic transfer functions are extracted from the second-order time

signal generated in random waves, and the comparison with other bench-mark test results shows a good agreement. This approach is

directly applicable to prediction of nonlinear forces on offshore structures in random ocean.

1. INTRODUCTION

Oil and gas exploration and extraction have been moving into
deeper and deeper waters, and the offshore structures are being
designed for operation at stationary positions. Such design includes
spar buoys, and FPSOs. The
second-order component plays the key role in the slow-drift

tension-leg  platforms, large
motion and springing phenomena. Wave run-up on the body
surface is also an important issue related to the freeboard of
platform.

In the second-order phenomena, there are two distinct
categories; difference-frequency and sum-frequency effects. The
difference-frequency effects dictate the slow drift response of an
offshore structure restrained by weak restoring mechanisms. Its
natural period is of the order of the minutes. On the other hand,
the sum-frequency effects are responsible for the excitation of a
high-frequency response on the structure and its subsystem in
flexural modes with the resonance period being the of the order
of a few seconds.

Many studies on the second-order surface flow near offshore
structures can be found, and most works of these studies were
based on the

However, the time-domain approach does not hare a matured

frequency-domain approach, like Kim (1988).

status yet. Moreover, most of the work was for monochromatic
and bichromatic waves. The direct simulation of the second-order
wave-body interaction flow in real ocean spectra remains as a
challenging topics.

The present study concentrates on multi-frequency waves,
aiming the prediction of the multiple linear and quadratic transfer
functions on a single run, and finally, the application of a
realistic ocean spectrum. The method of solution is a Rankine
panel method, which has been developed at MIT. This method

adopts the B-spline basis function for approximation of physical
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quantities, while the body geometry is discretized into flat panels.
In addition, a modified Euler scheme is applied for time stepping.
Kim, Kring and Sclavounos (1997) have applied this numerical
scheme successfully to monochromatic waves. The multi-frequency
problem is more complicated than the monochromatic wave in
many aspects, and particularly much more computational effort is
required.

This paper starts with a brief description of the boundary value
problem and the numerical method for the second-order diffraction
flow. The convergence of the present numerical method is
mentioned for an arbitrary order of basis function, and the
consistency and stability are proved. The computational models are
circular cylinders, being ‘bottom-mounted or truncated. An integral
method of the Fourier transform is used to extract sum- and

difference-frequency  transfer functions for bichromatic and
multi-frequency waves. The computational results are compared

with other benchmark test, and a good agreement is observed.

2. FORMULATION

Lets define a Cartesian coordinate at the body center on still
water, pointing upward for a positive z coordinate. Assuming the
inviscid fluid flows with irrotationality, the linear and second-order
velocity potentials and wave elevations can be perturbed from the
total velocity potential such that

(g‘)(}, t)=(‘z:)(}, t>+(f;22)(}, D+ ...

The boundary value problems of the linear and second-order
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diffraction problems are well known. The linear and second-order
velocity potential of random or multi-component incident wave

can be written as follows:
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where the subscript 1,2 means the order of problem. In the
there are sum-

second-order wave, and difference-frequency

components. The free-surface boundary conditions on z=0 becomes
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where §, , means the delta function, which becomes umit in the
k=2. ‘Therefore,
problem requires the linear solution and its past history.

second-order problem, ie. the second-order

Fig. 1 Coordinate system

A noflux condition must imposed on the body surface and
other rigid boundary.
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A ©

Moreover, the uniqueness of solution is guaranteed when the
radiation condition is implemented properly in far field.

The hydrodynamic forces can be obtained by the pressure
integration of the linear and second-order pressure,
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3. NUMERICAL METHOD

3.1 Rankine Panel Method

A Rankine panel method has been used to solve the boundary
value problem described above. There are many variations of the
Rankine panel method, but the present study adopts the numerical

scheme developed by Sclavounos (1988) for steady forward-speed
problem and Nakos (1993) for the unsteady ship motion,
particularly Kim et al (1997) for the second-order problem. This
numerical method adopts flat panel, but the physical quantities are
approximated using a B-spline basis function,

(x> 2 (DB (2) =2 (P (&7 )67 O)

where (p) and (q) are the degrees of the B-spline function on
two coordinates along panel surface.

Time integration scheme is a modified Euler method, and the
free-surface boundary conditions are written as follows:
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where P, and P,, mean the forcing terms of equation (4) and

(5). In addition, and At is time segment and the superscript
indicates the time step.

The velocity potential on solid boundary and normal flux on
free surface can be obtained from Greens identity such that
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The radiation condition is imposed using the artificial damping
zone. In this zone, the kinematic free-surface boundary condition
takes the following form:

e _ 99,
dt oz
The first additional term plays the key roll to damp the
movement of free surface, while the second extra term prevents
the change of the linear dispersion characteristics in this zone.

+ ulnk + :uZ(Pk = 62,k})lcin (13)

The optimum combination of two terms is when H, =—p/4g
(Kim ez al (1997)).

3.2 Stability Issue

The stability analysis for the numberical scheme with bi-
quadratic basis function was Introduced by Kim er al (1997) for
the second-order diffraction problem, applying the same idea with
Scalvounos and Nakos (1988), and Nakos(1993). This analysis
applies a triple discrete Fourier transformation for time segment
At and constant panel spaces, Ax and Ay.

T,v,0) = AdyAr Y Y fim T ”
I m n

Then the numerical dispersion relation in the discrete domain
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takes the following form:

W(u,v,0)=e*™ — (2~ gAt’S)e™ +1=0 (15)

when (u,v) is the characteristic wave number of (xy) coordinates
and @ is the wave frequency. S(u, v) is the function of the
wave number, and it is related with the Fourier transformation of
basis function and Rankine source. For the arbitrary orders of
basis function defined in equation (9), the general form of
S(u, vy for arbitrary orders of (p) and (g) is written as follows:

1 (=D?" As(vAs)*!
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+

(16)

It is easy to find that it approaches the inverse of continuous
wave number when AS= O(Ax, Ay)—(,so that equation (15)

recovers the continuous dispersion relation as A (.

When the magnitude of e is greater than unit, the numerical
solution becomes unstable. Figure 2 shows the contour plot of
S/48* where g is V ax/gAf, which plays a key role for
stability. The stable computation is expected when S/ 4% is less
than 1.0. The basis functions are bi-quadratic in figure (a) and
bi-cubic in figure (b). Figure (a) and figure (b) show almost
identical stability zones, so we can conclude that, in the viewpoint
of stability, the order of basis function may not be higher than
bi-quadratic. Therefore,
bi-quadratic basis function.

the present computation adopts the

3.3 Fourier Transform

The FFT scheme is popular in the Fourier transform of time
signal. However, FFT has some restrictions for the selection of
frequency. In the present study, the Fourier transform suggested
by Kim et al (1997) is applied. This method has an advantage
that the component can be extracted for any arbitrary frequency
as long as the signal is longer than the corresponding period.

When a function is written as the sum of a constant and the
series of exponential function,

A)=Cot 3, Cre ™ an

its integral with respect to time should be also satisfied as
follows:
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(a) Bi-quadratic basis function

v /s

(b) Bi-cubic basis function

Fig. 2 Contour plots of S$/44 and stability zone; & =1.0,
p=q=2a),3b)
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Here the weight function function with

frequency, ®,, The integrals in right-hand side are trivial and the

is an exponential

analytic solution is well known, while the left integral must be
obtained using numerical integration. When we apply (N+1)
frequencies, which are equal to the basis frequencies of A5, a
matrix equation for unknown C, can be assembled. In the
second-order problem, both sum- and difference-frequencies should
be applied in equation (18).
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4. COMPUTATIONAL RESULT
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in figure 3. In this case, the incident wave is bichromatic, and

one frequency is fixed as kje=1.2. The agreement is very

The computation was carried out for single cylinders, being favorable.
bottom-mounted and truncated. Polar grid system with proper
stretching near the body was applied. Figure 3 shows an example
of solution grids for a bottom-mounted cylinder. In the simulation
of multi-component wave, the solution grid must be fine enough
to resolve the shortest wave and the computational domain should
be large enough to cover the longest wave. Usually, in the
second-order problem, the former comes from the sum-frequency
components and the latter from the difference-frequency.

Figure 4 compares the computed surge QTF (quadratic transfer
function) with Kim’s (1988) for a bottom-mounted cylinder shown

(b) Second-order wave

Fig. 5 Instantancous linear and corresponding second-order wave

Fig. 3 Solution bottom-mounted profile around a cylinder; #/a=4.0, ka=1.0, 1.2, 1.4, 1.6

grids for a
depth(/)/radius(a)=4.0
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Fig. 4 Surge QTF obtained from the bichromatic force signal;

the same cylinder with figure 4, £, =1.2 (fixed) bottom-mounted cylinder, the same case with figure 5

Fig. 6 The lincar and second-order surge force signals on a
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Figure 5 shows the snapshot of the instantaneous linear and
corresponding second-order wave profile around a bottom-mounted
cylinder, and the linear incident waves have four different
frequencies. ka=1.0,12,14,1.6. The
corresponding linear and second-order surge forces are shown in

time histories of the
figure 6. Four components are mixed in the linear signal, so that
the 16 (4X4) sum-frequency and 16 (4X4) difference-frequency
components are mixed in the second-order signal.

Panel:3900
Panel:5100
Panel: 6100
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(a) Sum-frequency

2

(b) Difference-frequency

Fig. 7 Grid dependency of Surge QTF matrices, computational
domain; 80g, ka=1.0, 1.2, 1.4, 1.6

The linear and quadratic transfer functions can be extracted
from these signals using the Fourier transform described above,
and the results are shown in figure 7, 8 and 9. One of
advantages in the present method is that the four by four QTF
matrices of sum- and difference-frequency can be obtained at once
from a single signal. In the frequency-domain approach, all
combinations of bichromatic waves should be considered to get

these matrices.

Figure 7 shows the grid dependency of surge QTF matrices.
Since the grid resolution is an important issue in numerical
analysis, the observation of grid dependency is essential. Figure 7
shows the comparison of the QTF matrices for three different grid
numbers with Kim’s result (1988). Both sum- and difference-
frequency components shows a good agreement. Moreover, it is
obvious that the present numerical scheme is not sensitive on the
number of grids as long as the resolution near body is fine
enough for the shortest wave.

R/a=20
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n

(a) Sum-frequency

Fig. 8 Domain-size dependency of Surge QTF matrices

Figure 8 shows the dependency on the computational domain.
Domain size may be important for the difference-frequency
components. The longest wavelength in the present case is 150q,
but it is very interesting that the result is quite reasonable even
with 20a. As well known, the surface memory effect is important
in the second-order problem, so that usually a few times of
second-order wavelength should be taken into account in a
frequency-domain method. However, the present result shows that,
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in a time-domain method, the computational domain may not
stretch very far. In the time-domain approach, the distance of
wave propagation depends on simulation time, and memory effect
can be considered properly as long as the radiation condition is
well imposed.

Numerical tests were carried out also for the different time
steps, the parameters for artificial damping zone and the time
window for Fourier transform, but any significant sensitivity is not
found.

n/a

t(g /a) 1/2
Fig. 9 The wave and corresponding forces on a truncated
circular cylinder, draft/radius=4.0, ITTC wave spectrum, sea state
6; from above, input wave at (x)=(0,0), the linear surge &
heave forces, the second-order surge & heave forces

The present computational method can be easily extended to
random ocean spectra. Figure 9 shows the input wave and the
corresponding forces on a truncated cylinder. The incident wave
has 30 components from ITTC spectrum, sea state 6. The
significant wave height is 5.0m and the modal period is 12.4sec.
Therefore, the second-order signals have 1800 components, ie.
900 from sum-frequency and 900 from difference-frequency. The
Fourier transform applied in the present method is not valid in
the analysis of these signals, and a nonlinear statistical scheme
should be applied. Some studies can be found for the analysis of
experimental data, and most of them have applied Volterra series.
The application of the nonlinear statistic method to the computed
time signal brings some issues and difficulties, so that a thorough

study is necessary.
5. CONCLUSIONS

The present study focused on the diffraction problem in
multi-frequency waves. The linear and second-order boundary
value problems have been solve by Rankine panel method, which
adopts the bi-quadratic B-spline basis function for the physical
parameters. A modified Euler scheme has been applied for the
time stepping. From this study, the following conclusions can be
made:

» The numerical scheme presented in this study has the
consistence and stability, so that the discrete dispersion relation
is recovered when the spatial and temporal discretizations
become small.

« The computational
dependency on computational parameters as long as the grid

results don’t show any significant
resolution near body is fine enough for the shortest wave.

» The quadratic transfer functions showed a good agreement
with other benchmark test, and the present numerical scheme
can be extended directly to the realistic ocean waves.

» More detailed study is required for the analysis of the
second-order signals in random ocean spectra.
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