Journal of the Korea Society of Computer and Information (한국컴퓨터정보학회논문지)
- Volume 6 Issue 2
- /
- Pages.48-57
- /
- 2001
- /
- 1598-849X(pISSN)
- /
- 2383-9945(eISSN)
An Adaptive Search Strategy using Fuzzy Inference Network
퍼지추론 네트워크를 이용한 적응적 탐색전략
- Lee, Sang-Bum (Chosun University) ;
- Lee, Sung-Joo (Chosun University) ;
- Lee, Mal-Rey (Yosu national University)
- Published : 2001.06.01
Abstract
In a fuzzy connectionist expert system(FCES), the knowledge base can be constructed of neural logic networks to represent fuzzy rules and their relationship, We call it fuzzy rule inference network. To find out the belief value of a conclusion, the traditional inference strategy in a FCES will back-propagate from a rule term of the conclusion and follow through the entire network sequentially This sequential search strategy is very inefficient. In this paper, to improve the above search strategy, we proposed fuzzy rule inference rule used in a FCES was modified. The proposed adaptive search strategy in fuzzy rule inference network searches the network according to the search priorities.
퍼지 논리의 추론과정에서 일부의 정보가 무시되어 적절하지 못한 추론 결과를 초래할 수 있다. 한편 신경망은 패턴 처리에는 적합하지만 인간의 지식을 모델링 하기 위해서 필요한 논리적인 추론에는 부적합하다. 그러나 신경망의 변형인 신경 논리망을 이용하면 논리적인 추론이 가능하다. 따라서 본 논문에서는 기존의 신경 논리망을 기반으로 하는 추론네트워크를 확장하여 퍼지 추론 네트워크를 구성한다. 그리고 기존의 추론 네트워크에서 사용되는 전파규칙을 보완하여 적용한다. 퍼지 추론 네트워크상에서 퍼지규칙의 실행부에 해당하는 명제의 믿음 값을 결정하기 위해서는 추론하고자 하는 명제에 연결된 노드들을 탐색해야 한다.
Keywords