Recent Development of Removal and Treatment of Toxic Heavy Metals by Microorganisms

유독 중금속 오염물질 처리를 위한 미생물균주의 최근 이용 및 개발

  • 방상원 (한양대학교 자연과학대학 생명과학과) ;
  • 최영길 (한양대학교 자연과학대학 생명과학과) ;
  • 한명수 (한양대학교 자연과학대학 생명과학과)
  • Published : 2001.06.01

Abstract

There are several ways to remove and treat toxic heavy metals in the environment: chemical, physical and biological ways. The biological treatment utilizes the natural reactions of microorganisms living in the environments. These reactions include biosorption and bioaccumulation, oxidation and reduction, methylation and demethylation, metal - organic complexation and insoluble complex formation. The biological reactions provide a crucial key technology in the remediation of heavy metal-contaminated soils and waters. According to recent reports, various kinds of heavy metal species were removed by microorganisms and the new approaches and removal conditions to remediate the metals were also tried and reported elsewhere. This was mostly carried out by microorganisms such as fungi, bacteria and alga. In addition, a recent development of molecular biology shed light on the enhancing the microorganism's natural remediation capability as well as improving the current biological treatment.

중금속을 처리하는 방법에는 일반적으로 화학적, 물리적 그리고 생물학적 처리방법 등이 있다. 이중 생물학적 처리방법은 미생물들의 자연 생체기작을 이용하는 방법으로, 생체축적 (biosorption & bioaccumulation), 산화환원반응 (oxidation & reduction), 메칠화 및 탈메칠화반응 (methylation & demethylation), 금속 유기물질 복합반응 (metal-organic complexation)과 비용해성 복합체형성 (insoluble complex formation) 등의 기작을 이용한 방법이다. 이런 중금속에 대한 생물학적 기작들은 중금속으로 오염된 환경을 복원시키는 데에 중요한 기술기반을 제공한다. 최근 금속의 종류와 미생물균주의 종류와 조건 그리고 오염환경에 따른 다양한 방법의 중금속 처리들이 제시되었고, 이는 주로 곰팡이, 박테리아, 조류(algae) 등을 이용한 방법들이다. 또한 분자생물학의 발전과 더불어 중금속 제거능력을 배가시킨 균주의 최근 개발시도는 기존의 생물학적 처리방법을 개량 발전시킬 수 있는 가능성을 제시하고 있다.

Keywords

References

  1. 국제환경동향 제23호 환경부
  2. 환경백서 2000 환경부
  3. Appl. Environ. Microbiol. v.66 Engineering hydrogen sulfide production and cadmium removal by expression of the thiosulfate reductase gene (phsABC) from Salmonella enterica Serovar Typhimurium in Escherichia coli Bang SW;DS Clark;JD Keasling
  4. Biotechnol. Lett. v.22 Cadmium, lead, and zinc removal by expression of the thiosulfate reductase gene from Salmonella typhimurium in Escherichia coli Bang SW;DS Clark;JD Keasling
  5. Environ. Sci. & Technol. v.34 Bioremediation and bioreduction of dissolved U (Ⅵ) by microbial mat consortium supported on silica gel particles Bender J;MC Duff;P Phillips;M Hill
  6. Bioremediation of Inorganics An overview of the bioremediation of inorganic contaminants Bolton JH;YA Gorby;Hinchee, RE;JL Means(ed.);DR Burris(ed.)
  7. Crit. Rev. Environ. Sci. & Technol. v.28 Microbial chromium (Ⅵ) reduction Chen JM;OJ Hao
  8. Chemosphere v.41 Performance of different microalgal species in removing nickel nad zinc from industrial wastewater Chong AMY;YS Wong;NFY Tam
  9. Biotechnol. Lett. v.22 Engineering the Escherichia coil outer membrane protein OmpC for metal bioadsorption Cruz N;S Le Borgne;G Hernandez-Chavez;G Gosset;F Valle;F Bolivar
  10. Bioresource Technol. v.76 Biosorption of cadmium (Ⅱ), lead (Ⅱ) and copper (Ⅱ) with the filamentous fungus Phanerochaete chrysosporium Day R;A Denizli;MY Arica
  11. Mol Biotechnol. v.12 Heavy metals bioremediation of soil Diels L;M De Smet;L Hooyberghs;P Corbisier
  12. J. Environ. Eng. v.125 Removal of heavy metals and COD by SRB in UAFF reactor El Bayoumy M;JK Bewtra;HI Ali;N BIswas
  13. Water Res. v.34 Biosorption of metals in brown seaweed biomass Figueira MM;B Volesky;VST Ciminelli;FA Roddick
  14. Annu. Res. Nutr. v.17 Toxic and essential metal interactions Goyer RA
  15. Toxicol. Lett. v.103 Carcinogenicity of metal compounds: possible role of DNA repair inhibition Hartwig A
  16. Bioresource Technol. v.70 Removal of heavy metals using the fungus Aspergillus niger Kapoor A;T Viraraghavan;D Cullimore
  17. J. Ind. Microbiol. Biotechnol. v.24 Effect of pH on the biosorption of nickel and other heavy metals by Pseudomonas fluorescens 4F39 Lopez A;N Lazaro;JM Priego;AM Marques
  18. Microbiology v.146 Enzymically mediated bioprecipitation of uranium by a Citrobactor sp.: a concerted role fofr exocellular lipopolysaccharide and associated phosphatese in biomineral formation Macaskie LE;KM Bonthrone;P Yong;DT Goddard
  19. J. Chem. Technol. Biotechnol. v.75 Investigation of zinc (Ⅱ) adsorption on Cladophora crispata in two-staged reactor Ozer D;A Ozer;G Dursun
  20. J. Ind. Microbiol. Biotechnol. v.25 Biosorption of U, La, Pr, Nd, Eu and Dy by Pseudomonas aeruginosa Philip L;L Iyengar;C Venkobachar
  21. Int. J. Environ. Pollut. v.11 Immobilized microbial reactor for the biotransformation of of hexavalent chromium Philip L;C Venkobachar;L Iyengar
  22. Chemosphere v.39 Production of methylated mercury, lead, and chamium by marine bacteria as a significant natural source for atmospheric havy metals in polar regions Pongratz R;KG Heumann
  23. J. Microbiol. Biotechnol. v.8 Evaluation of metal biosorption efficiency of laboratory-grown Microcystis under various environmental conditions Pradhan S;S Singh;LG Rai;DL Parker
  24. Environ. Sci. Technol. v.34 Biosorption of metal ions Arthrobacter sp.: biomass characterization adn biosorption modeling Pagnanelli F;M Papini;L Toro;M Trifoni;F Veglio
  25. Biotechnol. Prog. v.15 Biosorption of lead, cadmium, and zinc by Citrobacter strain MCM B-181: Characterization studies Puranik PR;KM Paknikar
  26. Appl. Microbiol. Biotechnol. v.53 Lead, copper and zinc biosorption from bicomponent systems modelled by empirical Freundlich isotherm Sa Y;A Kaya;T Kutsal
  27. Bioresource Technol. v.72 Removal of cadmium and lead from dilute aqueous solutions by Rhodotorula rubra Salinas E;ME de Orellano;I Rezza;L Martinez;E Marchesvky;MS de Tosetti
  28. Appl. Environ. Microbiol. v.66 A new Klebsiella planticola strain (Cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulfide Sharma PK;DL Balkwill;A Frenkel;MA Vairavamurthy
  29. J. Appl. Microbiol. v.88 Reduction and precipitation of chromate by mixed culture sulphate-reducing bacterial biofilms Smith WL;GM Gadd
  30. Water Res v.34 The effect of acid pre-treatment on the biosorption of chromium (Ⅲ) by Sphaerotilus natans from industrial wastewater Solisio C;A Lodi;A Converti;M Del Borghi
  31. Nature Biotechnol. v.18 Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha Ch34 for immobilization of heavy metals in soil Valls M;S Atrian;V de Lorenzo;LA Fernandez
  32. World J. Microbiol Biotechnol. v.16 Screening of waste biomass from Saccharomyces cerevisiae, Aspergillus oryzae and Bacillus lentus fermentations for removal of Cu, Zn and Cd by biosorption Vianna LNL;MC Andrade;JR Nicoli
  33. Occup. Med. v.8 Environmental transformation of toxic metals Wade MJ;BK Davis;JS Carlisle;AK Klein;LM Valoppi
  34. J. Appl. Microbiol. v.84 Metal removal by sulphata-reducing bacteria from natural and constructed wetlands Webb JS;S McGinness;HM Lappin-Scott
  35. FEMS Microbiol. Rev. v.20 Microbial solubilization and immobilization of toxic metals: key biogeochemical processes fro treatment of contamination White C;JA Sayer;GM Gadd
  36. Nature Biotechnol. v.16 An integrated mocrobial process for the bioremediation of soil contaminated with toxic metals White C;AK Sharman;GM Gadd
  37. J. Chin. Inst. Chem. Eng. v.31 Pretreatment biomass of marine macroalgae as low cost high efficiency adsorbent for heavy metal ions Yu Q;P Kaewsarn;JT Matheickal;W Ma