Complemented CA derived from
a linear Two-Predecessor MACA
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ABSTRACT

In this paper, we analyze behavior of complemented CA derived from a linear Two-Predecessor
MACA(TPMACA) and obtain the state-transition diagram of complemented CA by using a basic path in the

O-tree of a linear TPMACA.

| . Introduction

An analysis of the state-transition behavior
of group cellular automata(briefly, CA) was
studied by many researchers ([1], {8], [10],
{12]). The characteristic matrix of group CA is
nonsingular. But the characteristic matrix of
nongroup CA is singular. Although the study
of nonsingular linear machines has received
considerable attention from researchers, the
study of the class of machines with singular
characteristic matrix has not received due
attention. Cho and Kim [6] and others [4,5]
studied nonsingular linear machines. Some
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properties of nonsingular CA have been
employed in several applications ([5], [9], [11],
[12]). In this paper, by using basic paths in
the O-tree of a linear multiple-attractor CA
with two predecessors(briefly, TPMACA) C
we obtain the state-transition diagram of
complemented CA C’ derived from C such
that the complement vector is a nonzero
attractor of C. Also we analyze the behavior
of C’'. We call C’ the CA corresponding to
C. Especially we investigate the behavior of
the complemented CA which the complement

vector is taken as a nonzero attractor of C.

I1. Preliminaries

Definition 2.1[2]. A state with a self-loop
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in the state-transition diagram of a nongroup
CA are referred to as an attractor.

Remark 2.2. The cycles with length /{=2)
in the state-transition diagram of a nongroup
CA are not attractors.

Definition 2.3[2]. The nongroup CA for
which the state-transition diagram consists of
a set of disjoint components forming (inverted)
tree-like structures at attractors are referred
to as MACA.

Remark 24. (1) In case the number of
attractors is one we call single-attractor CA
(SACA). (2) A MACA with two predecessors
is called a TPMACA.

The tree rooted at a cyclic state @ is called
an a —tree.

Definition 2.5[2]. The depth of a CA is
defined to be the minimum number of clock
cycles required to reach the cyclic state from
any nonreachable state in the state-transition
diagram of the CA.

Since the O-tree and another tree rooted at
a nonzero cyclic state have very interesting
relationships, the study of the O-tree is

necessary and very important.

2.6[7]. The
predecessors of a reachable state and the

Theorem number of

number of predecessors of the state 0 in a
linear nongroup CA are equal.

Definition 2.7[3]. A state X at level
[(1< depth) of the a-tree is a state lying
on that tree and it evolves to the state a

exactly after /-cycles (/7 is the smallest
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possible integer for which T'X = a).

Definition 2.8[3]. A state Y of an n-cell
CA is an r-predecessor (1< 7<2"—1) of a

state X if T"Y =X, where T is the
characteristic matrix of the CA.

Lemma 29[11]. Let 7T denote p times

application of the complemented CA operator

7‘. Then,
TR =[BT T°D...

D TTNFWIDI T’ UAN]

where T is the characteristic matrix of the
corresponding noncomplemented rule vector
and ([F(x)] is an
(n=number of cells) responsible for inversion
after XNORing. F(x) has 1’ (e,
nonzero entries) for CA cell positions where
XNOR function is employed.

n-dimensional  vector

entries

lil. The Behavior of complemented CA
derived from a linear TPMACA

By using basic paths in the O-tree of a
linear TPMACA C
transition diagram of complemented CA C’

we obtain the stat-

derived from C such that the complement
vector is a nonzero attractor of C. Also we
analyze the behavior of C'.

Lemma 3.1. Let C be a linear TPMACA
with depth d and F be a nonzero attractor in
C as a complement vector. Then the state 0
is a cyclic state in the complemented CA C’
corresponding to C. Also the cycle length
becomes two.

Lemma 3.2. Let C be a linear TPMACA
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and @ be a nonzero attractor in C as a
complement vector. Then «a

two-length cycle including the state 0 of C’

lies on the

corresponding to C.

Theorem 3.3. Let C be a linear TPMACA
and @ be a nonzero attractor in C as a
complement vector. Then the following hold:

(1) If 8 is an attractor of C, then 8P a
is also an attractor of C.

(2) If B is an attractor of C, then £ and
s @af are coalesced to form a two-length

cycle, and thus Band B @D a lie on the same
two-length cycle in the complemented CA C’
corresponding to C.

Theorem 3.4. Let C be a linear TPMACA.
ILet a be a nonzero attractor in C as a
complement vector. If x is a state at the level
2m in the B-tree of C, then x is a state at
the level 2m in the fS-tree of C'

corresponding to C.

Theorem 35. Let C be a linear TPMACA.
let ¢ be a nonzero attractor in C as a
complement vector. If y is a state at the level
(2m-1) in the fB-tree of C, then y is
rearranged at the level (2m-1) in the

( B a)-tree of C’ corresponding to C.

Now we construct the state-transition
diagram of the complemented CA
corresponding to a linear TPMACA.

Definition 3.6. Let C be a linear TPMACA
and the depth of C be d. Let B be a
nonreachable state of the «-tree of C. Then
we call the path f—>Tf—>—a a «a
-basic path of the a -tree of C.

Remark 3.7. Let C be a linear TPMACA

with depth d. Then
Sa0= Sa-107. 7 S1,0—0
is a O-basic path of the O-tree of C, where
TSit0= Sip(l<i<d-1)
and S;, is the leftmost state of level ¢
of the O-tree of C.

Theorem 38[7]. Let C be a linear
TPMACA. Given a 0-basic path of the O-tree
of C’ corresponding to C we can construct
the state-transition diagram of the O-tree of
C’' as the following : If the states of the
state-transition diagram of C(resp. C’) are
labeled such that S;(resp. S;;) be the

(k+1)-th state in the 1-th level, then
Sl,k = SI,O EB ‘Z!lbi Si,O

where b,—y b,—y°* b, is the binary
representation of k and the maximum value of

kis 271-1.

The next theorem deals with rearrangements
of the tree-structures between a linear
TPMACA C and its complemented CA C'.

Theorem 3.9. Let C be a linear TPMACA
and the depth of C be d. Let o be a nonzero
attractor in C as a complement vector. Given

a O-basic path S,9— S4-; —-—0 of the
O-tree of C, we can construct a O-basic path

3,;_0-* S4s——0 of the O-tree of
the complemented CA C' corresponding to C
as the following:

Sio
SiwDs

_ if / is even
Sio =
if / is odd

Lemma 3.10. Let Cbe a linear TPMACA.
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The states lying at the i-th level of the S
-tree of C' corresponding to C satisfy the

following:
Biy= S;: DB (k=0,, 271-1)

where B;, is the (k+1)-th state in the

i-th level of the A-tree of C' and S, is

in Theorem 3.8.

Theorem 3.11. Let C be a linear TPMACA
with depth d. A B -basic path of the B -tree

of C’ corresponding to C is
Ed'o and §d—l.0 —’"'—’B where EI.O is
the state in Lemma 310 and S,¢ is in

Theorem 38 (1<i<d).

Theorem 3.12. Let C be a linear
TPMACA. The (k+1)-th state lying at the
1-th level of the B -tree of C’ corresponding
to C satisfies the following:

If E,_ ¢ is the state in Lemma 3.10, then
—Bl.k = —BI.OV® IE{ b; Sio

where by bj-g-+ b, is the binary
representation of k and the maximum value of

kis 271-1.

Example 3.13. Let C be a five-cell linear

TPMACA with the rule <102, 102, 60, 240,
204>,
Then
11000
01100
T=101100
00100
00011

Now the characteristic polynomial of T is

ox) = x2 (1+x)* and the minimal
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polynomial of T is m(x) = x°(1+x). The
state-transition diagram of C is as the
following:

Figure 1 : The state-transition diagram of C

For the case F = (00001) T is the comple-
ment vector, the state-transition diagram of C

’

is as the following:

Figure 2 : The state-transition diagram of C’
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The O-tree and the 1-tree of C are closed
in C’. Also the state at the even levels of the
O-tree and the 1-tree of C remain unaltered
in C’ whereas the states at the odd levels of
C get interchanged between the trees in C’.

IV. Conclusion

By using a basic path in the O-tree of
TPMACA, we obtain the state-transition
diagram of complemented CA derived from
CA such that the complement vector is a
nonzero attractor of given TPMACA. Also we
analyze the behavior of complemented CA.
Especially we investigate the behavior of the
complemented CA which the
vector is taken as a nonzero attractor of given

TPMACA.

complement
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