Core-Shell Polymerization with Hydrophilic Polymer Cores

  • Park, Jong-Myung (Central Research Institute, Kumgang Korea chemical Co. (KCC), Ltd.)
  • Published : 2001.02.01

Abstract

Two-stage emulsion polymerizations of hydrophobic monomers on hydrophilic seed polymer particles were carried out to make core-shell composite particles. It was found that the loci of polymerization in the second stage were the surface layer of the hydrophilic seed latex particles, and that it has resulted in the formation of either eccentric core-shell particles with the core exposed to the aqueous phase or aggregated nonspherical composite particles with the shell attached on the seed surface as many small separated particles. The driving force of these phenomena is related to the gain in free energy of the system in going from the hydrophobic polymer-water interface to hydrophilic polymer-water interface. Thermodynamic analysis of the present polymerization system, which was based on spreading coefficients, supported the likely occurrence of such nonspherical particles due to the combined effects of interfacial free energies and phase separation between the two polymer phases. A hypothetical pathway was proposed to prepare hydrophilic core-hydrophobic shell composite latex particles, which is based on the concept of opposing driving and resistance forces for the phase migration. It was found that the viscosity of the monomer-swollen polymer phase played important role in the formation of particle morphology.

Keywords

References

  1. J. Appl. Polym. Sci. v.17 R. Y. Dickie;M. F. Cheung;S. Newman
  2. J. Polym. Sci., Polym. Chem. Ed. v.21 D. I. Lee;T. Ishikawa
  3. J. Polym. Sci., Polym. Chem. Ed. v.21 T. Min;A. Klein;M. S. El-Aasser;J. W. Vanderhoff
  4. Makromol. Chem. Macromol. Symp. v.35/36 M. Okubo
  5. J. Appl. Polym. Sci. v.30 I. Cho;K. Lee
  6. British Patent 1,009,486 A. Bordon
  7. U. S. Patent 3,291,768 A. Bordon
  8. Macromolecules v.26 A. Zosel;G. Ley
  9. J. Appl. Polym. Sci. v.33 K. M. Oconnor;S. L. Tsaur
  10. Polym. Int. v.33 J. Richard;C. Mignaud;K. Wong
  11. in Emulsion Polymerization, I. Piirma, Ed. V. I. Eliseeva
  12. J. Polym. Sci., Polym. Chem. Ed. v.22 S. Muroi;H. Hashimoto;K. Hosoi
  13. J. Paint Tech v.43(563) W. D. Ross
  14. Ind. Eng. Chem. Prod. Res. Dev. v.12(2) A. Seiner;Gehart
  15. ACS. Div. Org. Coat. Plast. Chem. v.33(2) P. E. Pierce;S. Babil;J. Blasko
  16. J. Coatings Tech. v.57(721) S. Fitzwater;J. W. Hook III
  17. J. Colloid Interface Sci. v.25 J. L. Lando;H. T. Oakley
  18. J. Colloid Interface Sci. v.43 K. Greene
  19. Ph. D. Thesis F. V. Loncar
  20. Makromol. Chem. v.177 W. Obrecht;W. Funke
  21. Ph. D. Thesis J. Kim
  22. Adv. Colloid Interface Sci. v.14 J. Hearn;M. C. Wilkinson;A. R. Goodall
  23. Kobunshi Ronbunshu v.33 S. Yanmazaki
  24. J. Polym. Sci., Polym. Chem. Ed. v.22 V. Dimonie;M. S. El-Aasser;A. Klein;J. W. Vanderhoff
  25. J. Colloid Interface Sci. v.33 S. Trza;S. G. Mason
  26. 19th Annual short Course v.6-10 in Advances in Emulsion Polymerization and Latex Technology D. Sundberg
  27. J. Polym. Sci., Polym. Chem. Ed. v.20 M. Okubo;Y. Katsuta;T. Matsumoto
  28. J. Polym. Sci., Polym. Chem. Ed. v.18 M. Okubo;A. Yamada;T. Masumoto
  29. J. Polym. Sci., Polym. Letter Ed. v.19 M. Okubo;M. Ando;A. Yamada;Y. Katsuta;T. Matsumoto
  30. Ind. Eng. Chem. Prod. Res. Dev. v.21 M. Chainey;M. C. Wilinsom;J. Hearn
  31. J. Ind. Eng. Chem. (Korea) J. M. Park