Synthesis and Light-Emitting Properties of Phenyl-Thiophene-Based Alternating Copolymers Synthesized by Heck Coupling Reaction

  • Shim, Hong-Ku (Center for Advanced Functional Polymers, Department of Chemistry and School of Molecular Science, Korea Advanced Institute of Science and Technology) ;
  • Taek Ahn (Center for Advanced Functional Polymers, Department of Chemistry and School of Molecular Science, Korea Advanced Institute of Science and Technology) ;
  • Lee, Hye-Young (Center for Advanced Functional Polymers, Department of Chemistry and School of Molecular Science, Korea Advanced Institute of Science and Technology) ;
  • Lee, Jeong-Ik (Basic Research Lab., Electronics and Telecommunications Research Institute)
  • Published : 2001.04.01

Abstract

A series of poly(1,4-phenylenevinylene-alt-3-alkyl-2,5-thienylenevinylene)s (alkyl = hexyl [PPV-alt-6-TV] and octyl (PPV-alt-8-TV] group) have been synthesized by the Heck coupling reaction. These polymers were characterized using $^1$H-NMR, FT-IR spectroscopy, and thermogravimetric analysis (TCA). They are solvent processible and have obviously copolymeric structure. The photophysical properties of the polymers were investigated using UV-visible and steady-state photoluminescence(PL) spectroscopy. We studied the change of light-emitting properties by incorporating the thiophene group into the PPV polymer backbone using alternating copolymer system. The properties of two synthesized polymers are very similar, but they exhibited apparent changes of light-emitting properties compared with other PPV backbone based polymers. The broad absorption bands from 350 to 570 nm are due to $\pi$-$\pi$* transitions of the polyconjugated systems. The absorption maxima of the two polymers were found at about 452 and 448 nm for PPV-alt-6-TV and PPV-alt-8-TV, respectively. The copolymers showed broad PL spectra between 550 and 700 nm without vibronic bands and PL emission maxima of PPV-alt-6-TV and PPV-alt-8-TV are about 620 and 605 nm, respectively. The copolymers exhibited the red emission (PPValt-6-TV), but more red shifted emissions are needed to obtain real red color.

Keywords

References

  1. Nature v.347 J. H. Burroughes;D. D. C. Bradley;A. R. Brown;R. N. Marks;K. Mackay;R. H. Friend;P. L. Burn;A. B. Holmes
  2. Angew. Chem. Int. Ed. v.37 A. Kraft;A. C. Grimsdale;A. B. Holmes
  3. Polymer v.37 W. J. Feast;J. Tsibouklis;K. L. Pouwer;L. Groenendaal;E. W. Meijer
  4. Korea Polymer Journal v.5 S. J. Lee;D. W. Kim;S. Y. Park;S. I. Hong
  5. New Sci. v.141 K. C. Fox
  6. Bull. Korean Chem. Soc. v.19 D. H. Hwang;S. D. Jung;L. M. Do;T. Ahn;H. K. Shim;T. Zyung
  7. Nature v.397 R. H. Friend;R. W. Gymer;A. B. Holmes;J. H. Burroughes;R. N. Marks;C. Taliani;D. D. C. Bradley;D. A. Dos Santos;J. L. Br$\'{e}$das;M. L$\"{o}$gdiund;W. R. Salaneck
  8. Korea Polymer Journal v.7 H. S. Kim;S. H. Noh;T. Tsutsui
  9. Handbook of Conducting Polymers($2^{nd}$ ed.) T. A. Skotheim;R. L. Elsenbaumer;J. R. Reynolds
  10. Macromol. Chem. Phys. v.198 A. Hilberer;P. F. vanHutten;J. Wildeman;G. Hadziioannou
  11. Appl. Phys. Lett. v.58 D. Braun;A. J. Heeger
  12. J. Phys. Chem. v.100 G. H. Gelinck;J. M. Warman;E. G. J. Staring
  13. Chem. Commun. v.19 D. H. Hwang;S. T. Kim;H. K. Shim;A. B. Holmes;S. C. Moratti;R. H. Friend
  14. Adv. Mater. v.10 H. Spreitzer;H. Becker;E. Kluge;W. Kreuder;H. Schenk;R. Demandt;H. Schoo
  15. Adv. Mater. v.12 H. Becker;H. Spreitzer;W. Kreuder;E. Kluge;H. Schenk;I. Parker;Y. Cao
  16. Macromolecules v.33 T. Ahn;S. Y. Song;H. K. Shim
  17. Macromolecules v.32 T. Ahn;M. S. Jang;H. K. Shim;D. H. Hwang;T. Zyung
  18. Phys. Rev. B v.41 A. J. Brassett;N. F. Colaneri;D. D. C. Bradley;R. A. Lawrence;R. H. Friend
  19. Macromolecules v.26 Z. Bao;Y. Chen;R. Cai;L. Yu
  20. J. Polym. Sci. v.3 B. T. Storey
  21. Synth. Met. v.54 I. D. E. Samuel;B. Crystall;G. Rumbles;P. L. Burn;A. B. Holmes;R. H. Friend
  22. Appl. Phys. Lett. v.62 U. Lemmer;R. F. Mahrt;Y. Wada;A. Greiner;H. B$\"{a}$ssler;E. O. G$\"{o}$bel